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Abstract

Automated decision making is one of the important problems of Artificial Intelligence (AI).

Planning and scheduling are two sub-fields of AI that research automated decision making. The

main focus of planning is on general representations of actions, causal reasoning among actions

and domain-independent solving strategies. Scheduling generally optimizes problems with

complex temporal and resource constraints that have simpler causal relations between actions.

However, there are problems that have both planning characteristics (causal constraints) and

scheduling characteristics (temporal and resource constraints), and have strong interactions

between these constraints. An integrated approach is needed to solve this class of problems

efficiently.

The main contribution of this thesis is an integrated constraint-based planning and schedul-

ing approach that can model and solve problems that have both planning and scheduling char-

acteristics. In our representation problems are described using a multi-valued state variable

planning language with explicit representation of different types of resources, and a new ac-

tion model where each action is represented by a set of transitions. This action-transition model

makes the representation of actions with delayed effects, effects with different durations, and

the representation of complex temporal and resource constraints like time-windows, deadline

goals, sequence-dependent setup times, etc simpler.

Constraint-based techniques have been successfully applied to solve scheduling problems.

Therefore, to solve a combined planning/scheduling problem we compile it into a CSP. This

compilation is bounded by the number of action occurrences. The constraint model is based

on the notion of “support” for each type of transition. The constraint model can be viewed

as a system of CSPs, one for each state variable and resource, that are synchronized by a

simple temporal network for action start times. Central to our constraint model is the explicit

representation and maintenance of the precedence constraints between transitions on the same

state variable or resource.

We propose a branching scheme for solving the CSP based on establishing supports for

transitions, which imply precedence constraints. Furthermore, we propose new propagation

and inference techniques that infer precedence relations from temporal and mutex constraints,

and infer tighter temporal bounds from the precedence constraints. The distinguishing feature

of these inference and propagation techniques is that they not only consider the transitions and

actions that are included in the plan but can also consider actions and transitions that are not

yet included in or excluded from the plan.
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We conclude the thesis with a modeling case study of a complex satellite problem domain

to demonstrate the effectiveness of our representation. This problem domain has action choices

that are tightly coupled with temporal and resource constraints. We show that most of the

complexities of this problem can be expressed in our representation in a simple and intuitive

way.
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Chapter 1

Introduction

Automated decision making is one of the important problems of Artificial Intelligence (AI).

In AI, planning and scheduling are two sub-fields that research automated decision making.

Although the goal of these two fields is the same, generating plans to achieve goals, they do

focus on solving different parts of the problem. The focus of planning is more on generality and

reasoning about causalities between activities in a domain-independent way, while scheduling

traditionally focuses on resolving time and resource constraints for a given set of activities

where most of the causal relations are known. However, there are practical problems that have

both planning and scheduling characteristics, and the interactions between these characteristics

are very tight. To solve this class of problems efficiently we need to integrate planning and

scheduling techniques.

AI planning problems are usually formulated with: an initial state, a goal state, and a set

of actions. The task of a planning algorithm is to select and order a subset of actions , which is

called a Plan, such that if we execute the selected actions according to their ordering starting

from the initial state, we will reach the goal state. For example, consider a problem where we

have to plan a journey to the airport from home. We can either catch a bus or a taxi to go to the

airport. This means that there are two possible plans to achieve our goal (to be at the airport).

1. Plan-1: walk-to-bus-stop→ get-in-bus→ get-out-at-airport

2. Plan-2: walk-to-taxi-stand→ get-in-taxi→ get-out-at-airport.

Even though both plans are valid plans, they may fail during execution because these plans

ignored the temporal and resource constraints. A plan where each action has a start time is

called a schedule and the process of assigning start times to the actions is called scheduling.

A schedule is executable if it satisfies all temporal and resource constraints. The following

temporal information is given for our journey planning problem: we have to be in the airport

within one hour, it takes 10 and 5 minutes to walk to the bus stop and taxi stand respectively

from home. A bus takes 50 minutes to reach the airport and the next bus is due in 15 minutes

time. A taxi will take 35 minutes to reach the airport. From this temporal information we can

deduce that Plan-1 is not valid any more, because we have to be in the airport with an hour but

1



2 Introduction

Plan-1 will take at least 65 minutes ( 15 minutes before the next bus + 50 minutes traveling

time). Plan-2 remains valid, because we can reach to the airport before one hour using a taxi.

Moreover, if we assume that the taxi would only accept cash as fare and we don’t have any

cash, then we need to the consider extra action of going to an ATM. In this case, validity of

Plan-2 would depend how far an ATM is from home and from the taxi stand. If this detour

(home to ATM to taxi stand) takes more than 15 minutes, then Plan-2 will become invalid.

Like in the example above, there are many real life problems (for example, consider the

satellite problem described by Smith et al. in [47]) that have complex action choices (plan-

ning) and a set of time and resource constraints (scheduling), and the interaction between the

consequences of action choices and the temporal and resource constraints is very tight. To

make good executable plans (or schedules) for this class of problems we need to consider the

causal constraints together with the temporal and resource constraints at the same time.

In this thesis we propose a integrated system for solving this class of planning problems

that have tightly coupled planning and scheduling characteristics. In the remaining sections

we first give a background on existing integrated planning scheduling systems. Then we will

briefly outline the contributions of this thesis.

1.1 Integrating AI Planning and Scheduling

Problems that are in between planning and scheduling usually share some common complexi-

ties like time-windows, resource constraints, complex alternative choices of actions, sequence

dependent setup times on resources between actions etc. Most of these complexities, except

the action choices, can be seen as standard scheduling constraints. In general in these problems

there is a subset of actions that only need to be performed at most once, while there are other

actions that may have to be executed more than once. This characteristic of having a set of

actions where each action occurs at most once has similarity with scheduling problems with

alternative actions choices (multi-mode scheduling [7]). The action choices in multi-mode

scheduling problems are generally due to availability of alternative resources and/or different

action costs. There is a basic difference between these action choices in scheduling problems

and the class of planning problems that we want to solve. In multi-mode scheduling the action

choices are generally causally independent and limited to a small fixed set of actions, while

problems in this “in-between” class often involve cascading sets of choices of actions that can

interact with each other in a complex way and it is not computationally feasible to enumerate

all valid choices beforehand [47]. This means that the interactions between action selection

and ordering, and temporal and resource constraints are very strong in these problems.

There are mainly two types of modeling languages in the literature to model problems

with planning and scheduling constraints: state/action-based representations, and timeline-

based representations. The most commonly used state/action-based representation for model-
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Figure 1.1: Planning scheduling integration

ing temporal and resource planning problems is PDDL2.1 [24]. PDDL2.1 can express most

of the complexities of our class of problems. Problems in PDDL2.1 are described using state

variables representing the state of the world, and actions with pre-conditions and effects whose

execution changes one state to another. Timeline-based planning languages do not explic-

itly represent states or actions. Instead they keep track of evolution of each state variable

and resource (i.e. timeline) by placing tokens on timelines. Each token represents a change

within a time interval. Individual tokens on state variable and resources are synchronized via

compatibility constraints (generally expressive temporal constraints). Another recently pro-

posed planning language ANML [15] tries to combine the best of both timeline-based and

state/action-based modeling languages. We will discuss the similarities and the differences

between these languages and our representation in Chapter 2.

There are different ways to integrate planning and scheduling techniques in a system.

Smith et al. [47] classify the most common integration approaches into three types, as shown

in Figure 1.1.

At one end of the spectrum, we can treat planning and scheduling as two different pro-

cesses. First the planning process finds a plan that will achieve the goal, and then the scheduler

takes the initial plan and schedules the actions to satisfy the temporal and resource constraints.

One major problem of this approach is that not all valid plans are schedulable given a set of

temporal and resource constraints. So when the scheduler fails to find a schedule, a new plan

has to be generated. This process will continue until a schedulable plan is generated. Although

this approach is simple, it is not effective for solving problems that have tight interaction be-

tween planning and scheduling constraints.
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The second possibility is to interleave planning and scheduling processes. This means that

whenever the planner chooses an action to achieve a goal condition, the scheduler posts addi-

tional ordering constraints between the selected action and other actions already in the plan, to

satisfy temporal and resource constraints. The majority of the integrated planning and schedul-

ing systems are based on this idea. However, we can further distinguish these planners based

on their degree of interleaving. One example of loosely interleaved planning and scheduling

technique is the temporal planner CRIKEY [29]. It uses a classical planner (FF [31]) together

with a simple temporal network (STN) [18] to generate a schedulable plan and then uses a

scheduler that generates a better quality temporal plan. Planners like Zeno [41], IxTeT [28],

COLIN [13], Filuta [20], etc are more tightly integrated (i.e these systems do not use a separate

scheduling process to improve the quality of the plan) temporal planners based on the state-

action representation. The emphasis of these planners is on generality of the representation

and finding domain-independent heuristics to solve planning problems efficiently. Examples

of planners that are based on timeline representations are HSTS [38], EUROPA [32], and

OMPS [27]. Scalability is often a major problem for these systems. In most cases, it has been

necessary to use domain-specific search control for them to achieve acceptable performance.

However, recent work on domain-independent search control for timeline-based planners [6]

may help overcome this problem in the future.

The third integration approach is to compile a problem with planning and scheduling

characteristics into a constraint-based search problem. Examples of this approach include

CPT [52], which takes a planning problem and converts it to a CSP [17], TM-LPSAT [45]

which converts a problem to a combination of propositional logic and linear constraints, and

CTN [43], which converts a planning problem described in a timeline-based representation to

a CSP. The advantage of compiling a problem to constraint-based search is the availability of

efficient solvers. In particular, converting to a CSP has the added advantage of being able to ex-

ploit the advancements in constraint-based scheduling [23] techniques. Note that planners that

interleave planning and scheduling processes also use constraint-based scheduling techniques

for temporal and resource reasoning. The difference between the compilation and interleaving

approach is that in the latter approach planning and scheduling decisions are kept separate.

Constraint-based scheduling is popular because of its power of inference for deducing

tighter bounds on temporal variables. There are two main categories of inference techniques:

one is based on absolute temporal information and the other is based on relative temporal

information. Examples of the first kind of inference techniques include Time-Tabling [4],

Not-First-Not-Last [50], Edge-Finding [40] etc. Examples of the second class of inference

techniques include the Balance and the Energy Precedence constraints [36]. Inference tech-

niques based on relative temporal information are very important for solving problems with

tightly coupled planning and scheduling constraints. The final set of activities on a schedule

are not known beforehand in most these cases, so it is better not to commit on the values of the
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temporal variables, but maintain the precedence order between activities.

1.2 Overview of Contributions

The main contribution of this thesis is an integrated constraint-based planning and scheduling

approach that can model and solve problems that have both planning and scheduling charac-

teristics. Our approach is to compile a planning problem described in our state/action-based

representation to a CSP. To solve this CSP efficiently we have developed a new branching

strategy and several new propagation and inference techniques.

In our representation, problems are described using a multi-valued state variable planning

language (like in, for example, SAS+[2]) with explicit representation of different type of re-

sources and a new action model. In our action model each action is represented by a set of

transitions, where each transition represents either an effect on a state variable or a resource

requirement of the action. This action-transition model makes the representation of delayed

effects and effects with varying duration of actions simpler. Chapter 2 presents the basics of

our representation in detail. Complex temporal and resource constraints like time-windows,

deadline goals, sequence-dependent setup times etc, can be expressed in this representation

in a simple and intuitive way. In Chapter 5 we describe how these features are added on top

of the basic representation. We demonstrate modeling of a complex satellite domain in our

representation in Chapter 6.

A problem described in our representation is solved by compiling it into a CSP. This com-

pilation is bounded by the number of action occurrences (similar to the planner CPT). The

constraint model is based on the notion of “support” for each type of transition, where the

meaning of “support” is similar to that of a causal link in partial-order planning (POP) [55].

In this thesis we extend the concept of causal links to resource transitions which are called

“support links”. The constraint model can be viewed as a system of CSPs, one for each state

variable and resource, that are synchronized by a simple temporal network (STN) for action

start times. Central to our constraint model is the explicit representation and maintenace of the

precedence constraints between transitions on same domain object. Chapter 3 describes the

compilation process and the constraint model.

We propose a branching scheme based on establishing causal and support links, which

imply precedence constraints. Furthermore, we propose several new propagation and inference

techniques that infer new precedence relations from temporal and mutex constraints, and infer

tighter temporal bounds from the precedence constraints. The main feature of these inference

and propagation techniques is that they not only consider the transitions and actions that are

included in the plan but can also deduce new constraints for actions and transitions that are

not yet included in or excluded from the plan. The power of our propagation techniques is as

good as the inference techniques like the Energey Precedence and envelope-based techniques,
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for bounding temporal variables, and in addition they infer additional precedence constraints.

Chapter 4 describes our branching, propagation and inference techniques.

1.3 Publications

Part of this thesis is published in the following two conference papers, and a workshop paper:

1. Debdeep Banerjee. Integrating Planning and Scheduling in a CP Framework: A
Transition-Based Approach. In Alfonso Gerevini, Adele E. Howe, Amedeo Cesta,

and Ioannis Refanidis, Editors, Proceedings of the 19th International Conference on

Automated Planning and Scheduling. AAAI Press, 2009.

2. Debdeep Banerjee and Patrik Haslum. Partial-Order Support-Link Scheduling. In

Fahiem Bacchus, Carmel Domshalk, Stefan Edelkamp, and Malte Helmert, Editors, Pro-

ceedings of the 21st International Conference on Automated Planning and Scheduling.

AAAI Press, 2011.

3. Debdeep Banerjee, Jason J. Li. Resource-based Planning With Timelines, In the

ICAPS Workshop on Planning and Scheduling with Timelines, PSTL 12, 2012.

The first paper describes the transition-based representation and compilation techniques for

temporal planning problems only involving state variables. The second paper describes the

resource transitions and the CSP model for solving the single mode Resource Constrained

Project Scheduling Problems with min/max time lags (RCPSP/max). In this paper we intro-

duced the support link-based branching and inference techniques for resource transitions. We

compared our method of creating partial order schedules for RCPSP/max problems with two

other approaches: a two stages approach that first finds a fixed point schedule and then lifts

it to get a partial order schedule, and a envelope-based precedence constraint posting method.

The third paper describes a case study on how to model and solve a factory problem in our

transition-based framework.



Chapter 2

Modeling Planning and Scheduling
Problems

A systematic way of studying a problem is to model the problem of interest in some formal

specification and simulate different solving strategies by exploiting the specification. AI plan-

ning and scheduling problems are usually modeled using a set of interconnected components

in a formal specification that describes the problem in terms of its components and relation-

ships between the components in a precise (mathematical) way such that an automated solving

mechanism (usually search) can be defined. A planning model usually reflects the reality of the

problem domain. But to able to solve a problem, often we need to trade off between expres-

siveness of the model and the solution techniques’ efficiency. The more expressive a model is,

the harder it is to solve. So in general, a model is a sufficient approximation of the real world,

such that we can solve these problems efficiently. Although modeling is an important part of

solving problems, in reality it’s quite hard and time consuming and sometimes impossible to

model a problem close to reality. It will always have to be an approximation. There is now

research on how to solve problem with incomplete models [33].

The problems that we want to model and solve in this thesis are the problems that are in

between planning and scheduling problems. In this type of problems, things that needed to

be modeled are the domain objects such as states of the components and resources, and how

these objects interact with each other via actions. For the planning part we need to model the

causal interaction between actions, that describes how one action can enable another action,

and for the scheduling part we need to model the validity of these interactions by making

sure none of the domain objects are in an invalid state at any point in time. In this thesis

we assume a deterministic model of actions under the closed-world assumption, meaning that

we know exactly the effects of each action and only actions change the state of components

of the planning problem. All the numeric quantities in our model, like durations, resource

requirements, capacities of resources, time etc. are integer values.

7
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2.1 Background and Related Work

There are many representation languages to represent planning problems. The most com-

monly used representation languages in the planning community are PDDL [1] and its variants.

PDDL1.2, provides language constructs for classical planning problems based on STRIPS,

where actions have instantaneous effects. Successors of PDDL1.2 such as PDDL2.1 [24] ex-

tends to temporal planning via introducing durative actions and continuous numeric variables,

and define semantics for concurrency and temporal constraints. Generally, AI planning mod-

els are based on a description of the world in terms of propositional and numeric variables and

functions defined over them, and actions that have pre- and post-conditions that changes the

world. Although PDDL is used widely in the planning research community (due to the fact that

there are lot of example problem domains available, as it is being used as the official language

for International Planning Competitions), its not easy to model practical problems mainly due

to its propositional nature and lack of support for modeling different kind of resources and

different temporal constraints that occur in many real world problems. Scheduling [9] problem

models are generally described by available resources and durative activities that have different

requirements on these resources. Alternative options to achieve goals are generally represented

by different modes of action execution. In general scheduling lacks a representation language

that can be used to model problems in a high level description.

Other attempts have been made to represent problems that are in between planning and

scheduling. A concrete approach was introduced in HSTS[38], called HSTS-DDL. The main

idea was to represent planning and scheduling problem as a dynamic system model. This

method was inspired by approaches in control to synthesize valid behaviors of dynamic sys-

tems. The main difference between this approach and PDDL-type planning representations is

that in this approach a planning problem is described as set of timelines instead of proposi-

tional state variables, and there is no concept of a global state or actions. A timeline represents

the temporal evolution of some feature of a component of the problem domain over a planning

horizon. Each feature can have more than one state that it can assume, but can be only in one

state at any time point. Each timeline is described by a set of temporal intervals, called tokens.

A token on a timeline describes the state of the feature, that the timeline represents, over the

interval. Since a feature can be only in one state at any time, this means tokens on a timeline

are totally ordered and there is no time-gap between the end of a token and the start of the next

token. Tokens are constrained with other tokens (on the same timeline or on different timeline)

via compatibility constraints. To solve a problem, the task is to allocate and order tokens on

each timeline, such that all compatibility constraints are satisfied, and at the end of the planning

horizon states of the timelines satisfy the goal. The timeline-based planning problem represen-

tation has been further extended by languages like DDL [11] and NDDL [32], that are mainly

used in space applications. Modeling in these languages requires a very good understanding
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of the domain and the working of constraint-based solving strategies.

Recently, ANML [15] was introduced as a modeling language for planning and schedul-

ing problems that tries to take best of both PDDL and timeline based representations. This

language represents planning problem with multi-valued state variables (as in timeline-based

languages) and has notions of actions and states (as in PDDL-based languages). It represents

resources as bounded numeric fluents (like PDDL-based languages) and supports expressive

temporal constraints (as in timeline-based languages). ANML supports both generative and

HTN planning. Although it provides an expressive language to represent planning and schedul-

ing problems, there is yet no planner that solves a planning problem described in ANML.

In this section we describe the representation that we will be using to model planning

problems. This representation is based on the multi-valued state variable representation of

planning problems, with the following extensions:

• In our representation we explicitly represent resources as domain objects. Usually in

AI planning resources are represented as numeric fluents. In most real world problems,

resources can be easily identified and they have structure. That means, resources in real

world are more constrained w.r.t how they can be used than general numeric fluents. We

would like to exploit this structure while reasoning about them by making different types

of resources explicit in the representation.

• We represent actions as a set of synchronized durative effects, where these effects can

have different durations. We call these durative effects of actions Transitions. This

means that in our representation, instead of talking about the durations of actions, we talk

about the durations of transitions of actions. In planning and scheduling representations,

generally durations are associated with actions, which forces each effects of an action

(or resource requirement of an activity in the scheduling case) to have same duration.

The motivation behind our action representation is to allow modeling of a actions where

effects can have different durations. For example, in a factory planning setting, lets say

action MAKE-P 1-M 1 represents making of Product 1 in Machine 1 and it takes 15

units of time to make the product. This means that MAKE-P 1-M 1 needs Machine 1,

which is a resource, for 15 units of time. It also needs a worker to configure Machine 1,

but only for the first 5 units of time. To model this action either in PDDL or in standard

scheduling model we need two actions (or activities), where the first one action requires

a worker and Machine 1 for 5 units of time, and produces the precondition of the second

one, and the second action needs Machine 1 and makes the product Product 1 in 10

units of time. In our presentation this can be achieved using only one action with two

different effects that start at the same time, but the first one requires the machine for 15

units of time, and the second one requires a worker for 5 units of time.

• For each transition we define a temporal constraint, which is a part of the transition
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description, that expresses the time delay between start of the transition and start of its

action. This allows us to model delayed effect of actions.

• Each action effect (transition) is typed depending on if the transition is on a multi-valued

state variable or on a resource.

The main aim here is to make the modeling task as simple as possible for the domain modeler

and provide a flexible way to describe complex actions. Our representation is closely related

to the ANML language. Like ANML we also describe a planning problem with multi-valued

state variables, and have notion of action. The differences are:

• Our representation only supports generative planning, where ANML can also support

HTN planning.

• Our representation explicitly represents resources as domain objects, where ANML de-

scribes resources as bounded numeric fluents.

• ANML provides temporal qualifiers that helps to represent expressive actions. In our

representation we introduce a different action model where each action is described by a

set of transitions. It our action model, actions can have only certain types of transitions,

where each type has a clear semantics how they affect state variable and resources. Al-

though this restricts our representation to express arbitrary effects of actions, it helps us

to develop a solution technique that is described in the next chapter.

The planning language used by the partial-order planner IxTeT [28] is also closely related

to our representation. In this representation, changes caused by actions are instantaneous. The

problem with instantaneous change is that the domain modeler becomes responsible for ensur-

ing the safe execution of actions on state variables and resources. We represent changes as tran-

sitions which can encapsulate complex durative processes of change. Especially on a resource,

it is complicated to represent such complex durative processes using instantaneous resource

events in a way that guarantees safe execution. This is also why ANML represents consump-

tions and productions of resources as transitions [15]. We believe that transitions make the

domain modeler job easier to ensure the safe execution of actions (see Section 2.2.3.4).

2.1.1 Base representation and extensions

In the following sections we describe our planning problem representation in detail. First we

describe the components of our base representation, which includes resources, state variables

and actions. Then we describe the planning problem in terms of these components, initial

states and goal description, and then discuss what we mean by a solution to a planning prob-

lem in the base representation. In Chapter 3 we will describe automatic compilation techniques
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that transforms the planning problem described in the base representation to a constraint sat-

isfaction problem. To keep the base representation, and its compilation to a constraint model,

simple, it does not include explicit representation of common scheduling constraints such as

setup time, deadlines, time-windows etc. Instead, in Chapter 5 we will show how these con-

straints can be modelled as add-on constraints on top of the constraint model generated from

the base representation. In Chapter 6 we will demonstrate the modeling of a complex satellite

problem using the extended representation.

2.2 Components of a Planning Model

To model a planning problem, we need to model the planning world and actions that manipulate

the world. By planning world we mean the collection of domain objects relevant to problem,

that can be in different states. For example, for a factory planning problem, the planing world

can consist of machines, workers, products, orders etc. Actions are the components that ma-

nipulate the planning world by changing one or more domain objects states. For example,

making a product is an example of an action for factory planning that changes the state of the

product from not-yet-made to made, and changes the state of a machine from available to not

available during execution.

The planning model in our representation consists of three components: Resources, State

Variables1 and Actions. Resources and state variables are the domain objects that describes the

state of the world. Resources and state variables evolve over time, meaning that the availability

of resources and the state of state variables changes over time.

We view state variables and resources as timelines as described in control-based modeling

of planning and scheduling problems. That means by timelines of state variable and resource

we will mean their evolution over time in terms of states and resource availability.

2.2.1 Resources

Resources play an important role in most realistic planning and scheduling problems. Any ob-

ject that enables an action to execute can be thought of as a resource. For example, in a factory

planing problem machines, workers, raw materials to produce goods, and money are examples

of resources. In general resources can be categorized in different types [5, 49] depending on if

a resource can be consumed, produced, usage is either discrete or continuous, if the capacity of

a resource changes over time etc. For example, raw material in a factory scheduling problem

can be considered as a consumable resource as actions need to consume raw materials to pro-

duce goods, and in the process generate waste materials that can be considered as producible

resource, which enables a cleaning action to execute. On the other hand, money can be seen

1In the rest of the thesis, a state variable will always mean a multi-valued state variable.
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as a both producible and consumable resource as paying workers wages consumes money and

selling products to customers produces money for the factory.

Resources that appear in real world problems can be categorized in the following two broad

categories, based on what the way they can be accessed:

• Reservoir Resource: This is a resource that can be either consumed by actions at the

beginning of execution or produced by actions at the end of execution. For example,

consider an inventory that has finite capacity to store finished products in a factory. Each

produced good needs to be stored before it can go out to a customer, where it consumes

some space in the inventory, and when it is delivered to the customer it produces the

same amount of space in the inventory.

• Reusable Resource: This is a resource that can be borrowed by actions at the beginning

of their execution, and returned with the same amount at the end of the execution. An

example of this kind of resource is a machine in a factory. When an product is being

made in a machine, it borrows the machine until it finishes. No other products have

access to the machine during this time.

In this thesis we assume all resources have constant integer capacity. This means that the

capacity of resources does not change with time and can only be required by discrete integer

amounts.

2.2.1.1 Resource Model

For each resource r, capacity(r) represents the integer capacity of resource r, which repre-

sents maximum amount of resource available at any point in time. Note that resources have

constant capacity over time. If capacity(r) = 1, we will call the resource Unit-Capacity

Resource, otherwise we will call r a Multi-Capacity Resource. Let type(r) denote the type

of the resource r which can be either Reusable or Reservoir. To reason about action execu-

tion, it is important to track the amount of resource available at any given time point. For

any given time point t, let level(r, t) represent the amount of resource available to use at

that time point. Note that level(r, t) is an non-negative integer and bounded within the range

[0, capacity(r)]. When level(r, t) = 0 it means there is no resource available, and when

level(r, t) = capacity(r) it means resource is full. level(r, t) can be seen as the resource

profile function of r, as defined by Cesta et al [12]. Similarly, let free-space(r, t) denote

how much free space is there in the resource at a given time t. The variable free-space(r, t)
is the complement2 of the variable level(r, t). Note that, at any time point t the invariant

free-space(r, t) + level(r, t) = capacity(r) holds. Since free-space(r, t) represents the

complement of the level(r, t), 0 ≤ free-space(r, t) ≤ capacity(r) also holds. Figure 2.1

2Similar idea to the dual view of resources of Cushing and Smith[56].
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Figure 2.1: Resource Model

describes usage of a capacitate resource over time.

2.2.2 State Variables

State variables are the domain objects in the planning world that can be in one of many (finite)

possible states at any given time. An action can either change states of a state variable from

one to another, or require a particular state to hold during its execution. A simple example

would be a light bulb, that can be in two possible states: On and Off. Figure 2.2 describes a

transition graph of a state variable representing a light bulb. Nodes in the graph represent the

possible states. Edges are labeled with actions that either change states or require a particular

state. Action SWTICH-ON changes the state OFF to ON and similarly action SWITCH-OFF

changes the state ON to OFF. Action DO-STUFF requires the state ON during its execution.

2.2.2.1 State Variable Model

For each state variable sv, dom(sv) represents the possible set of values (or states) that sv can

assume. At any given time point t, let state(sv, t), denote the state of sv at t. state(sv, t) can

be seen as the timeline function [43] of the state variable sv. At any time point t, sv can be

either in one of its possible states or transiting from one state to another. The state of a state

variable when it is changing states is undefined and denoted by ∅. For each state variable sv
at any time point t, state(sv, t) has exactly one possible value, i.e. state(sv, t) = v, where
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Figure 2.2: State Variable: Bulb

v ∈ dom(sv) ∪ {∅}.

2.2.3 Actions and Transitions

Actions3 are the components that manipulate the states of the domain objects. An action can

change states of a subset of state variables from one state to another or requires a particular

state, and consume, produce or borrow resources. An action can have effects on one or more

state variables and resources simultaneously, and these effects can have different durations.

This means that in our representation an action doesn’t have duration, its effects have durations.

Since we assign durations to the individual effects of actions, these effects become important

reasoning entities on their own right. We call each effect of an action a Transition.

Before we describe transitions of action, we want to make distinction between an action and

an action instance. An action instance is an occurrence of an action at a particular time. An

action can occur more than once in a plan. For example, consider an action Move(truck,A,B),

representing moving a truck from location A to location B in some logistics domain. Now if we

say the action Move(truck,A,B) starts at time point t, then we mean that an instance of the action

Move(truck,A,B) starts at t. There may be another instance of that action that starts at other

time point. Note that multiple instances of an action can start at the same time. For example

consider an action PRODUCE COAL that produces 10 units of coal from a coal mine. Now if

3By action we mean grounded action
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our goal is to produce 30 units of coal, then we can execute 3 instances of PRODUCE COAL

action simultaneously. We always execute an action instance not an action. It means start time

is only defined for an action instance, not for an action. When we talk about the start time of

an action, we mean the start time of an instance of that action. Note that multiple instances of

an action can have same start time. We consider each action instance as a unique entity.

We first describe transitions and how they affect evolution of the state variables and re-

source, then we describe the relationship between actions and its transitions.

2.2.3.1 Transition

A transition T is always associated with an action instance. For each transition T, let act(T)
denote the action instance this transition is part of, dur(T) denote the duration of transition

T, req(T) represent the requirement of transition T, start(T) and end(T) represent the start

time and end time of T respectively. All transitions are non-preemptive, which means that they

can’t be stopped after they start executing. This means that the following relation holds:

end(T) = start(T) + dur(T)

Depending on if a transition is executed on a resource or on a state variable, we define two

main types of transitions: State Variable Transitions and Resource Transitions. In the fol-

lowing section we describe how state variable transitions and resource transitions are further

categorized depending on how they affect state variables and resources.

2.2.3.2 Transitions on State Variables

Each state variable transition can be either an EFFECT Transition that causes a state change,

or a PREVAIL Transition that represents a persistent state requirement on the corresponding

state variable. In the following we describe these two types of transitions in details.

EFFECT Transitions: If a transition changes states of a state variable from one to another,

we will call this transition an EFFECT transition. On each state variable sv, the requirement

of each EFFECT transition TE
sv is a pair of states of the state variable, i.e. req(TE

sv) =<

s f rom, sto >, where s f rom 6= sto and s f rom, sto ∈ dom(sv). It represents the fact that TE
sv

achieves the state sto from the state s f rom. The pre-condition of the EFFECT transition TE
sv is

the state s f rom, denoted as pre(TE
sv) = s f rom, and the post-condition is the state sto, denoted

as post(TE
sv) = sto. As described before for each state variable sv, state(sv, t) describes the

state of sv at time point t. If the EFFECT transition TE
sv is executed on the state variable sv,

the following three conditions must be satisfied.



16 Modeling Planning and Scheduling Problems

1. At the start of the execution the state of sv must be the pre-condition of TE
sv.

state
(

sv, start(TE
sv)
)
= pre(TE

sv) (2.1)

2. At the end of the execution the state of the state variable sv must be the post-condition

of TE
sv.

state(sv, end(TE
sv)) = post(TE

sv) (2.2)

3. During the execution at all intermediate time points between the start and the end of TE
sv

the state of the state variable must be undefined i.e. ∅. It represents that an EFFECT

transition is executing on sv.

∀t s.t. start(TE
sv) < t < end(TE

sv) : state(sv, t) = ∅ (2.3)

Figure 2.3 describes the effect of the execution of an EFFECT transition T1 on a state variable

sv that has dur(T1) = 6 and achieves the state s′ from s where s, s′ ∈ dom(sv). Transition

T1 starts its execution at the time point t and finishes at the time point t + 6. The state of the

state variable is s at time point t, and s′ at the time point t + 6, and all intermediate time points

(from t + 1 to t + 5) the state of the state variable sv is undefined. Note that if an EFFECT

transition T2, on the state variable sv, has unit duration (i.e. dur(T2) = 1), and has the same

requirement as T1, then there will be no intermediate time point where the state variable sv
would be undefined as described in Figure 2.4.

PREVAIL Transitions: If a transition does not change states of a state variable, but instead

requires a particular state for the duration of its execution, we will call this transition a PRE-

VAIL transition. Each PREVAIL transition TP
sv on a state variable sv has the requirement

req(TP
sv) =< s >, where s is a possible domain value of the state variable sv, meaning that

the state variable must have the state s during the execution of TP
sv. That means at all time

points during the execution of TP
sv the the state of sv must be req(TP

sv).

∀t′ s.t. start(Tsv) ≤ t′ ≤ end(Tsv) : state(sv, t′) = req(TP
sv) (2.4)

Example: Recall the example of the state variable BULB given before. Now, consider that

there are two actions: SWITCH-ON-1 and SWITCH-ON-2 that have one EFFECT transition

each that changes the state of the BULB from OFF to ON. When the state of the bulb is

changed from OFF to ON, then there are 3 possible explanations of the cause of the change:

either EFFECT transition of SWITCH-ON-1 action was executed, or the EFFECT transition
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Figure 2.3: EFFECT Transition execution

Figure 2.4: Unit Duration EFFECT Transition execution
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of SWITCH-ON-2 action was executed or both EFFECT transitions of SWITCH-ON-1 and

SWITCH-ON-2 are executed simultaneously. Since our planning model is deterministic, we

assume that on each state variable, only one EFFECT transition can change states of the
state variable at any given time. That means, if the bulb changes its state from OFF-to-

ON, then either one of the EFFECT transitions of SWITCH-ON actions must be executed, not

both. This assumption forces all EFFECT transitions that change states of the state variable

to be totally ordered. Given a transition pair Tsv and T′sv on the state variable sv, we say that

they are totally ordered iff either T′sv finishes its execution on sv before Tsv starts its execution

or T′sv starts after Tsv finishes, i.e. either start(T) ≥ end(T′) or start(T′) ≥ end(T) holds.

On the other hand, a PREVAIL transition requires a state variable to be in a particular state

during its execution. If there are other PREVAIL transitions that requires the same state, then

they can be executed parallely. Since EFFECT transitions change state of state variables, each

PREVAIL transition on a state variable, must be totally ordered with all EFFECT transitions

on the state variable.

State Variable as Resource: Each state variable, where all transitions on a state variable have

to be totally ordered, except for the PREVAIL transitions on the same state, can be viewed as

discrete-state resource, as described by Smith et al [49]. In a unit-capacity resource, only one

action can use the resource at time, meaning all actions that need the resource must be totally

ordered in the final solution. In case of a state variable, at most one EFFECT transition can

change the state of state variable at any time. In the final plan, all EFFECT transitions that

change states of the same state variable must be totally ordered.

2.2.3.3 Transitions on Resources

For a resource r and a given time point t, level(r, t) represents the amount of resource available

for use, and its dual free-space(r, t)4 represents the amount of free-space on the resource. The

level of resources (also the amount of free-space) changes only via execution of transitions on

resources. We describe the effects of transitions at each time point during their execution

intervals on resources via three resource events : production, consumption, and reservation.

Production and consumption events have their usual meaning, that is production (increament

of level) and consumption (decreament of level) of resources. When we say ”a transition T
reserves req(T) amount of free-space on the resource r at the time point t”, we mean that

at time point t the amount of free-space on r must be greater than or equal to req(T). That

means:

reserve(req(T), t)⇒ free-space(r, t) ≥ req(T)

4Note that level(r, t) + free-space(r, t) = capacity(r) at any time point t.
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Figure 2.5: PRODUCE Transition execution

Note that a reservation request for a transition T at the time point of t doesn’t change the

amount of free-space on r but posts the above condition that must hold if T is executed on r.

The reservation requests of transitions are additive. For example, if there exists two transitions

T and T′ such that at time point t they reserve req(T) and req(T′) amount of free-space on r,

then free-space(r, t) must be greater than or equal to req(T) + req(T′).
In our representation, a resource r can be either a reservoir resource or a reusable resource.

On reservoir resources, transitions can either produce or consume resource, and on resuable re-

source transitions can only borrow resource during their execution intervals. First we describe

how transitions consume and produce resources on reservoir resources, and then based on the

transitions defined on reservoir resources we describe how reusable resources are affected by

the transitions on them.

On a reservoir resource r, a transition Tr can either produce or consume req(Tr) amount

of resource during their execution. Note that production events increase the level of resource

and consumes free-space, and similarly consume events decrease resource level and produces

free-space. On each reservoir resource we define two types of transitions as following.

PRODUCE transition: Each PRODUCE transition TP
r that starts its execution at start(TP

r ),

reserves req(TP
r ) amount of free-space at each time point from start(TP

r ) to end(TP
r )− 1,

and produces req(TP
r ) amount of resource at the time point end(TP

r ). Figure 2.5 describes

the effect of a PRODUCE transition T that has duration 3. T reserves req(T) amount of free-

space from the starting time point t to the time point t + 2, and produces req(T) amount of

resource at t + 3.
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Figure 2.6: CONUSUME Transition execution

CONSUME transition: Each CONSUME transition TC
r consumes req(TC

r ) amount of re-

source at the time point start(TC
r ), and reserves req(TC

r ) amount of free-space at each time

point from start(TC
r ) to end(TC

r )− 1. Figure 2.6 describes the effect of execution of a CON-

SUME transition T that has duration 3. T consumes req(T) amount of resource at the starting

time point t and reserves req(T) amount of free-space from the time point t to the time point

t + 2.

Transitions on reusable resources can’t consume or produce resources separately as in

reservoir resource. Transitions on reusable resources can only borrow resources during their

execution. We define the type for transitions on reusable resources as the following:

BORROW transition: Each transition TB
r on a reusable resource r is called a BORROW tran-

sition that borrows req(TB
r ) amount of resource at start and returns the same amount at the end.

Each BORROW transition with duration d can be seen as a sequence of two (non-overlapping)

consecutive transitions, where the first one is a CONSUME transition with duration d− 1 and

the second one is a PRODUCE transitions with unit duration. Each BORROW transition TB
r

consumes req(TB
r ) amount of resource at start(TB

r ), reserves req(TB
r ) amount of free-space

at each time point from start(TB
r ) to end(TB

r ) − 1, and at end(TB
r ) it produces req(TB

r )

amount of resource. Figure 2.7 describes the effect of a BORROW transition T that has du-

ration 3. T consumes req(T) amount of resource at t, reserves req(T) amount of free-space

from the time point t to the time point t+ 2, and produces req(T) amount of resource at t+ 3.
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Figure 2.7: BORROW Transition execution

2.2.3.4 Safe execution of transitions on resources

Although transitions have positive non-zero durations, we assume that consumption events

occur at the start of the transition execution and production events occur at the end of the

transition execution and these events change the level of resource available. Note that at

any time point t the level of a resource r must be within the capacity of the resource, i.e.

∀t : 0 ≤ level(r, t) ≤ capacity(r). Each production event consumes free-space and each

consumption events produces free-space on the resource. At any time point t, free-space(r, t)
that represents the amount of free-space on the resource at t, which is the dual of level(r, t) .

By allowing transitions to reserve free-space, we enable safe execution of the durative transi-

tions on resources.

Definition 1. Safe Execution
A safe execution of transitions on a resource r, is a execution where at each time point t, the

invariant 0 ≤ level(r, t) ≤ capacity(r) holds and the total reservation request for free-space

on the resource is less than or equal to free-space(r, t).

Consider a reusable resource with capacity 4 that has three BORROW transitions T1, T2,

and T3, where all of them require 2 units of resource, T1 and T3 have duration 3, and T2 has

duration 2. Figure 2.8(top) describes an execution situation where T1 starts its execution at t,
and T2 starts it execution at t + 1. At start (time point 0) total resource available is 4. At time

point t resource level is 2, because T1 consumes 2 units of resource at t, at t + 1 T2 consumes

the remaining 2 units of resource. At t + 3, T1 and T2 finish their execution and produce 2
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Figure 2.8: Safe execution on reusable resource

units of resource each. At each time point, total required free-space reservation is satisfied

and at each time point sum of amount of free-space and resource level is 4 (capacity of the

resource). It means that execution of T1 and T2 on the resource is a safe execution. Now if we

want to execute T3 on the resource, we can see that if T3 starts at any time point between t and

t + 2, then the execution would not be safe. Because if T3 starts at any time point between t
and t + 2, then at t + 1 and t + 2 the total reservation of free-space would be 6 (each transition

would reserve 2 units of free-space), which would be greater than the available free-space on

the resource. So T3 can not start at any time point t′, where t− 2 ≤ t′ ≤ t + 3. The bottom

part of the Figure 2.7 describes one possible safe execution of T1, T2 and T3 on the reusable

resource, where T3 starts at t + 3.

Figure 2.9 describes an example of transition execution on a reservoir resource. The reser-

voir resource has capacity 6, at start (time point 0) 3 units of resource is available for use, and

a CONSUME transition Tc starts its execution at t and a PRODUCE transition starts at t + 1.

At t the level of resource reduced to 0 because Tc consumes 3 units of resource at start, and

at t + 4 Tp produces 3 units of resource. At the top part of the Figure 2.9 describes a safe

execution of Tc and Tp on the resource. Given another PRODUCE transition T′p that has

duration 2 and produces 3 units of resource, we can see that the T′p can start earliest at t + 3
time point. T′p can’t start at t + 1 or t + 2 because there is no free-space available to reserve.

Also note that since T′p is a PRODUCE transition, it actually consumes free-space at the end
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Figure 2.9: Safe execution on reservoir resource

when it produces resource. T′p can’t finish at t + 1 or t + 2, because then it will consume

3 units of free-space at those time points, and the execution of Tc and Tp will not be safe.

If T′p finishes at time point t or before, then amount of free-space in the resource will be 3.

Since there are no other CONSUME transition (that can produce free-space) to execute on the

resource, execution of Tc and Tp would become unsafe at t + 1 and t + 2. Which means that

T′p can’t finish at any time point before t + 2 (including t + 2) such that the execution Tc and

Tp remains safe. This means that T′p can’t start any time point before t (since T′p has dura-

tion 2). So we can conclude on the reservoir resource the execution of transitions where T′p
start earliest at t + 3 and produce 3 units of resource at t + 6, is a safe execution as described

in the bottom part of the Figure 2.9.

2.2.3.5 Conservative Modeling of Resource Transitions

In general, each resource transition of actions consumes or produces at a different or fixed

rate during their execution. For example, consider two actions AC and AP that consumes

and produces resource r respectively, where r is a reservoir resource with capacity(r) =

10. Figure 2.10 describes the consumption of AC and production of AP on the resource r.

Durations of both these effects are 4. Action AC consumes resource at different consumption

rate, during 0-1, it consumes 2 units, during 1-2 it consumes 1 unit, from 2-3 it consumes 5

units and 3-4 it consumes 2 units of resource. In total AC consumes 9 units of resource during
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Figure 2.10: Conservative Modeling of Action Resource Usage

its execution. Similarly, action AP produces total 8 units of resource at a fixed rate of 2 units

per unit of time during its execution.

In our representation we model consumption effect of AC as a CONSUME transition Tc
that consumes the total consumption amount at the start of its execution, i.e. req(Tc) = 9.

Similarly we model the production effect of AP as a PRODUCE transition Tp that produces

the total production amount at the end of its execution, i.e req(Tp) = 8. Both transitions

Tc and Tp have duration 4. This way of approximating the effects of actions can be seen

as coarse-grained discretization, where we lose the information about the consumption or

production process at each time-step during the execution interval of transitions. Because

of this coarse-grained discretization, we have the conservative assumption that each type of

transition reserves free-space during its execution. This conservative assumption ensures that

execution of transitions on a resource will be safe.

One disadvantage of the conservative assumption is that it delays the start of transitions,

where the transition could be executed earlier time in real world on reservoir resources. For ex-

ample, consider the execution situation described in Figure 2.11, where there are no other tran-

sitions except for Tc and Tp are executing on r, and at the beginning r is full, i.e. level(r, 0) =
capacity(r) = 10. If we assume start(Tc) = t, then at t, 9 units of resource is being con-

sumed by Tc. It means at t there exists 1 unit of resource and 9 units of free-space on the

resource. Note that Tc reserves 9 unit of free-space until t + 3. For Tp to start it needs to

reserve 8 unit of free-space. Since the free-space created by Tc is available at t+ 4, earliest Tp
can start is at the time point t + 4, where it reserves 8 unit of free-space from t + 4 to t + 7,

and produces 8 unit of resource at t + 8. The level of available resource from 0 to t− 1 is 10,

from t to t + 7 is 1 and from t + 8 onwards is 9.
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Figure 2.11: Coarse-Grained Discretization

If we look at the Figure 2.10, we can see if Tc starts executing at t, then earliest Tp can

start executing is at the time point t + 2 without overflowing or under-flowing the resource r.

We will describe latter how can we achieve this under the same conservative assumption using

our flexible action model that allows modeling delayed effects and multiple effects on same

state variable and resource as described below. This enables discretization of the consumption

and production effects of actions at a finer level.

2.2.3.6 Action-Transition Model

As stated earlier that actions have transitions on state variables and resources. Each action

has a set (possibly empty) of transitions on each state variable and resource. Recall that,

each transition is associated with an action instance. Here when we say that that an action a
has a transition T, we mean that each instance of the action a have a transition T. For each

action a, for each state variable sv and for each resource r, let effect(sv, a) and effect(r, a)
represent the set of transitions that action a has on sv and r respectively. For each action a, let

trans(a) = T a
state ∪ T a

res represent the set of transitions of the action, where T a
state represents

the set of transitions on state variables, and T a
res represents the set of transitions on resources.

T a
state =

⋃
∀sv

effect(sv, a)

T a
res =

⋃
∀r

effect(r, a)

Note that, if T ∈ trans(a), then act(T) = a.

Each transition of an action a, Ta ∈ trans(a) has a non-negative offset value, offset(Ta)
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that describes the delay between start of the action a and start of the transition Ta. Start time

of transitions are synchronized with the start time of their actions via these offset values. This

means that, for each transition Ta, where Ta ∈ trans(a), the start time of Ta is related with

the start time of a as the following:

start(T) = start(a) + offset(T) (2.5)

It means that after action a starts, transition T starts after offset(T) units of time.

In the PDDL-based representation each action has its duration and all effects take place

either at start or at the end of the action. Our action model differs from PDDL-based action

representation in two main ways: here actions do not have durations, instead the transitions

of actions have durations, and the start of each transition can be delayed from the start of the

actions, which enables us to model complex actions that appear in many real world problems

in a straight-forward way. Consider the example of the turning of a spacecraft in order to

point at a target, described by Smith [46]. To turn a space craft from one direction to other,

the reaction control system (RCS), must fire the thrusters to provide angular velocity, then the

spacecraft coasts until it points to the destination target, then the RCS thrusters are fired again

to stop the angular motion of the spacecraft. It means the firing of the thrusters happens in the

beginning and the end, and is controlled by the controller. Each time the thrusters are fired,

propellants are consumed and it creates vibrations which may prevent some other operation on

the spacecraft.

Assume that we have two state variables: Pointing that represents the location of the point-

ing device, whose domain consists of a finite set of targets, and Vibration representing the

vibration status of the spacecraft which can take two possible values {V, S}, where V stands

for “vibrating” and S stands for “stable”. There are two resources: a multi-capacity reservoir

resource Propellant, and an unit capacity reusable resource, Controller. In our representation

we can model the Turn action of the space craft from Target-1 to Target-2 with the following

sets of transitions. Each transition’s name is followed by its offset value and duration.

effect(Pointing, Turn) ={T1(0, 25)}

effect(Vibration, Turn) ={T2(0, 3), T3(7, 3), T4(20, 3), T5(27, 3)}

effect(Controller, Turn) ={T6(0, 10), T7(20, 10)}

effect(Propellant, Turn) ={T8(0, 10), T9(20, 10)}

Figure 2.12 describes the pictorial view of the transitions of the Turn action. Transition T1 on

the state variable Pointing changes the pointing location from Target-1 to Target-2 and takes

25 units of time, and starts at the same time when the action starts. Transitions T2 and T4 on

the state variable Vibration change the vibration status from “stable” to “vibrating”. Similarly,
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Figure 2.12: Transitions of Turn Action

transitions T3 and T5 change the the status from “vibrating” to “stable”. Each transition on the

state variable Vibration takes 3 units of time, and have 0, 7, 20, and 27 as their offset values

respectively. On the resource Controller the Turn action has two borrow transitions T6 and

T7, each borrows the Controller for 10 units of time. T6 starts when the action starts, and T7

starts 20 units of time after the action starts. On the reservoir resource Propellant, it has two

consume transitions that consume 20 units of propellant while executing for 10 units of time.

Note that T7 on Controller and T9 on Propellant starts after 20 units of time from the start of

the action Turn.

In the PDDL2.1 durative action model, the assumption is that all the effects of an action,

must happen either at start of the action or at the end of the action. Due to this assumption, as

Smith has argued [46], complex actions that have intermediate effects on state variables and

resources, like the Turn action described above, are not very easy to model with PDDL2.1. Our

action model allows delays between the start of transitions and their corresponding actions that

provides a straight-forward way to model complex realistic actions.

Valid Action Model: Recall that on each state variable all transitions must be totally ordered,
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except for PREVAIL transitions that require same state of the state variable. For each action we

can assume without loss of generality that all its PREVAIL transitions on a state variable are

non-overlapping, because if it has two PREVAIL transitions on different states, then those two

PREVAIL transitions will be totally ordered, and if they are on the same state and overlapping

then we can always model them as a single PREVAIL transition.

This means, that for an action model to be valid, for each state variable, all transitions of

the action on the state variable must be sequenced, such that for each two transition T1 and T2,

where T1 appears before T2 in the sequence, the following relation must hold.

offset(T2) ≥ offset(T1) + dur(T1) (2.6)

Similarly if an action has a set of overlapping resource transition on a resource, then total

requirement of the overlapping transitions must be less than or equals to the capacity of the

resource. Note that, if for an action the above conditions do not hold, then we can trivially say

that the action will not be part of any solution.

2.3 Planning Problem Specification

A planning problem is defined as P =< Rreuse, Rreserve, SV, A, H, init, goal >, where Rreuse

and Rreserve are the sets of reusable and reservoir resources respectively; SV is the set of state

variables; A is the set of actions; H is the planning horizon; init is the initial configuration

of the problem, and goal is the goal description. Each resource r ∈ Rreuse ∪ Rreserve has an

integer capacity capacity(r). Each state variable sv ∈ SV has a domain of states dom(sv).
Each action a ∈ A has a set of transitions (possibly empty) on each state variable and each

resource, where each transition T is a 5-tuple

T :< obj(T), type(T), dur(T), req(T), offset(T) >

where obj(T) represents the state variable or resource that T requires, and type(T) can as-

sume one of the 5 types of transitions EFFECT, PREVAIL, BORROW, PRODUCE, and CON-

SUME. dur(T), req(T), and offset(T) have their usual meaning as defined before. Note

that if a transition is a type of EFFECT, then req(T) is a pair of states, and if PREVAIL, then

req(T) is a state from the domain of obj(T), which is a state variable. If T is a resource

transition, then req(T) is a positive integer.

We assume that our planning horizon starts from time 0 and ends at H. Note that the hori-

zon is the time by which all goals of the problem must be achieved. In general, the horizon can

be set to infinity.

Initial Condition: The initial configuration of the problem init defines the resource avail-
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ability for each resource and the state of each state variable at the start. For each resource

r ∈ Rreuse ∪ Rreserve, init(r) represents the amount of available resource initially, i.e. 0 ≤
init(r) ≤ capacity(r). For reusable resources, since no transition can produce resource with-

out consuming it first or consume it without producing it at the end, the capacity of resource

must be same as the initial level of the resource throughout the planning horizon. This means

that for each reusable resource r, init(r) = capacity(r).

For each state variable sv ∈ SV, init(sv) denotes the initial state of sv, i.e. init(sv) ∈
dom(sv). Initial state description is defined for all resource and state variables.

Goal Condition: For each resource r ∈ Rreuse ∪ Rreserve goal configuration goal(r) defines

the amount of resource left in r at the end of planning horizon H. Each goal(r) is an interval

[minr, maxr], where

0 ≤ minr ≤ maxr ≤ capacity(r)

It represents that at the end of the planning horizon the amount of resource in r must be atleast

minr and at most maxr. Note that, if for a resource r minr = 0, and maxr = capacity(r),
then it means that we don’t care about the level of r at the end, in other words r does not have

any goal. As discussed above, on reusable resources there is no transition that can produce

or consume resource separately, all transitions borrow some resource. Since all transitions

must finish their execution before the end of the planning horizon, at the end the total amount

resource that will be left in a reusable resource is the total capacity of the resource. This means

that for each reusable resource r, goal(r) = [capacity(r), capacity(r)].

Unlike resources, goal is defined for only a subset of state variables in the planning prob-

lem. For a state variable sv, goal(sv) denotes the state of the state variable sv that sv must

have at the end of the planning horizon. We will call a state variable sv a goal state variable if

goal(sv) is defined, otherwise a non-goal state variable.

Note that all states are a possible end state of a non-goal state variable sv. But there are

cases when for a non-goal state variable, all states can be the potential end state except for

some states. The notation non-final(sv) describes such a set of states that can not be the end

state of the state variable sv.

2.4 Solution to Planning Problem

Traditionally scheduling problems are solved by assigning start times to the actions. Recently,

focus on Partial Order Schedules (POS) [42] has increased. In a POS, instead of assigning fixed

start times to the actions, new precedence relations are added to resolve resource contentions

among the actions, where each precedence relation implies temporal constraint. Interest in

POS can be attributed to the fact that POSs are more resilient to uncertainty than fixed time

schedules, and can have longer execution life. To exploit the advantages of POS like solutions
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in planning, we define a solution to a planning problem in our representation as a flexible plan.

A flexible plan for a planning problem P given in the representation described in the pre-

vious section, is defined as the following:

FlexiPlan(P) =< ActIns, StartTimeIntv, DistCons >

where ActIns is a set of action instances, StartTimeIntv is the set of start time intervals of

each action instance in ActIns, and DistCons is a set of difference constraints between each

pair of start times of the action instances in Act. Each difference constraint is described as the

following:

start(b)− start(a) ∈ dist(a, b)

Where a, b ∈ ActIns and dist(a, b) = [dist(a, b)min, dist(a, b)max] represents the minimum

and maximum distance between start(a) to start(b) respectively. For all action instances

in ActIns, start times are consistent with the constraints in DistCons. Each flexible plan

represent the same structure as a consistent Simple Temporal Network (STN)[18]. A STN is

a directed graph where nodes are time points and edges between nodes represents the distance

between time points. If two time points t and t′ have a constraint Min ≤ t′ − t ≤ Max, then

there exists an edge from t to t′ with weight Max, and there exists an edge from t′ to t with

weight −Min. A STN is consistent if it does not have any negative weight cycle. Here the

nodes in STN represent the action start times, and the edges represent the distance constraints

between the actions start times.

2.4.1 Realization of a Flexible Plan

In a flexible plan for a planning problem, start times of actions are intervals, representing the

possible time windows within which actions can start execution. While executing, the plan

execution engine chooses a fixed time point for each action from its start time window to

execute the action. Given a flexible plan, we define realization of the flexible plan as the

following.

Definition 2. Realization of a flexible plan
Given a flexible plan for a planning problem P , FlexiPlan(P), a realization, denoted by

R(FlexiPlan(P)), is an instantiation of the start times of the actions in the flexible plan with

particular values from the intervals, such that all distance constraints of the flexible plan are

satisfied.

This means that each flexible plan FlexiPlan(P) represents a set of realizations, where

each realization is a concrete possible execution of the plan.

Given a flexible plan, for simplicity we will denote a realization of a flexible plan as R. We

will denote a fixed start time as start[∗] and the start time interval start(∗) for both actions
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and transitions. We call each transition and action instance a time-stamped transition and

action instance if their start times are fixed. Note that, each realization of flexible plan is a set

of time-stamped action instance from the FlexiPlan(P). It means each action instance a ∈
ActIns has a fixed start time start[a] such that start[a] ∈ start(a). Since an action instance

and its transitions start times are synchronized, in each realization transitions of the time-

stamped action instances have a fixed start time, and also fixed end times, because transitions

are uninterruptable. Given a transition T, start[T], a nd end[T] denote the fixed start and end

time of T respectively, where start[T] = start[act(T)] + offset(T) and act(T) ∈ ActIns.

Each realization R, creates a schedule on each state variable and resource, where each

schedule is a set of transitions of the action instances in the realization.

Definition 3. Schedule on State Variables and Resources
Given a realization R, schedule on a state variable sv is a set of time-stamped state variable

transitions and schedule on a resource r is a set of time-stamped resource transitions, such that

for each transition T in these sets, the corresponding action instance act(T) is included in the

flexible plan.

schedule(sv, R) = {(T, t)| obj(T) = sv, act(T) ∈ ActIns, start[T] = t}

schedule(r, R) = {(T, t)| obj(T) = r, act(T) ∈ ActIns, start[T] = t}

2.4.2 Valid Schedule of a State Variable

Given a schedule of a state variable sv for a realization R, schedule(sv, R), let schedule(sv, R)E

represent the subset of schedule(sv, R), where all transitions are EFFECT transitions, and sim-

ilarly, schedule(sv, R)P represent the subset where all transitions are PREVAIL transitions.

Note that these two set are disjoint, i.e.

schedule(sv, R) = schedule(sv, R)E ∪ schedule(sv, R)P

For each state variable sv, state(sv, t) describes the state of the state variable at time point

t. A state variable at any time point must be either in one of its possible states defined in

dom(sv) or ∅ which represents the transition of state variable from one state to other. Given

a realization R, evolution of a state variable over an interval [t, t′] describes how the state

variable changes its states over the interval.

Definition 4. Evolution of a State Variable
For each state variable sv, evolution(sv, [t, t′]) represents the evolution of the state variable

sv as a set of state values for sv at each time point in [t, t′]. That means:

evolution(sv, [t, t′]) = {state(sv, t′′)|t ≤ t′′ ≤ t′} (2.7)
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Where ∀t′′ : state(sv, t′′) ∈ dom(sv) ∪ {∅}.

Constructing the Evolution on a State Variable: Recall that only EFFECT transitions change

states of state variable from one to other during its execution. Given an EFFECT transition TE
sv

that is in the schedule of the state variable sv, i.e. TE
sv ∈ schedule(sv, R)E, at the start of TE

sv,

the state of the state variable sv must be pre(TE
sv), and at the end of its execution the state of

sv must be post(TE
sv). If dur(TE

sv) > 1, then at the each time point from start[TE
sv] + 1 to

end[TE
sv]− 1 the state of sv must be ∅, denoting the intermediate state while sv is transitioning

from pre(TE
sv) to post(TE

sv). Given a schedule on a state variable sv, schedule(sv, R), we can

construct the evolution of the state variable sv for the interval [0, H] as the following:

• At time point t = 0, the state of sv must be the initial state init(sv). Note that for each

state variable the initial state is always defined.

state(sv, 0) = init(sv) (2.8)

• Since on each state variable all EFFECT transitions are totally ordered, at any given time

point t such that t > 0, then there must be at most one EFFECT transition that either

executing at t or ends at t. For all time point t, where 0 < t ≤ H, the state of sv is

defined by exactly one of the following cases:

Case-I If there exists an EFFECT transition TE
sv ∈ schedule(sv, R)E, such that

TE
sv is ending at t, i.e. end[TE

sv] = t, then the state of sv must be post(TE
sv)

at t.
state(sv, t) = post(TE

sv)

Case-II If there exists an EFFECT transition TE
sv ∈ schedule(sv, R)E, such that it

started its execution at the previous time point, meaning start[TE
sv] ≤ t− 1,

and its not ending at t, end(TE
sv) > t, then the state of sv at t must be the

intermediate state ∅ at t.
state(sv, t) = ∅

Case-III If none of the cases above holds at the time point t, then due to the

assumption of inertia, the state of sv stays same as the state at the previous

time point.

state(sv, t) = state(sv, t− 1)

Note that the evolution of a state variable created from a given realization always achieves the

initial condition of the planning problem. We will call a schedule on a state variable a valid
schedule if it produces a evolution for the state variable, and the evolution will satisfy the

pre-conditions of EFFECT transitions and overall conditions of PREVAIL transitions in the
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schedule and achieves the goal conditions if specified for the state variable.

Definition 5. Valid Schedule on State Variable
For each state variable sv, if a given schedule, schedule(sv, R), created by realization R,

satisfies the following three conditions, then we call it a valid schedule.

• All EFFECT transition pairs TE
sv and TE′

sv , in schedule(sv, R)E, are totally ordered, i.e.

either start[TE
sv] ≥ end[TE′

sv ] or start[TE′
sv ] ≥ end[TE

sv]. This condition ensures the

creation of a correct evolution of the state variable.

• Given the correct evolution of sv the pre-conditions of the EFFECT transitions in the

schedule must be satisfied, i.e. ∀TE
sv ∈ schedule(sv, R)E:

state(sv, start[TE
sv]) = pre(TE

sv) (2.9)

For all PREVAIL transitions in the schedule, the overall conditions must hold for each

time point their execution, i.e. ∀TP
sv ∈ schedule(sv, R)P,

∀t ∈ [start[TP
sv], end[TP

sv]] : state(sv, t) = req(TP
sv) (2.10)

• If the state variable sv has a goal condition goal(sv) defined in the goal description of

the planning problem, then the final state of sv must satisfy the goal condition.

state(sv, H) = goal(sv) (2.11)

• Each non-goal state variable sv must have an end state that is not included in their

non-final(sv) set.

state(sv, H) /∈ non-final(sv) (2.12)

2.4.3 Valid Schedule of a Resource

There are two types of resource in our planning representation, reservoir and reusable resource.

The main difference between these two type of resource is the way they can be accessed. On

a reservoir resource only two types of transitions can be executed: PRODUCE transitions that

produce resource at end of their execution and CONSUME transitions that consume resource

at start of their execution. On a reusable resource only BORROW transitions are allowed to

execute, where each BORROW transition can be described as a sequence of a CONSUME and

a PRODUCE transition (see BORROW Transition in Section 2.2.3.3). Since each transition’s

behavior can be described via three types of resource events, production, consumption and

reservation, we describe the effects of transitions on a resource (either reservoir or reusable)
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in a unified way in this section, where we do not distinguish between reservoir or reusable

resource.

For each resource r, given a schedule, schedule(r, R) for the realization R, let the subset

schedule(r, R)C contains the transitions that consume resource r at the start of their execution,

and schedule(r, R)P contains the transitions that produce resource r at the end of their exe-

cution. Note that if r is a reusable resource then all transitions in schedule(r, R) are of type

BORROW, which consumes at the start and produces same amount at the end. This means

that in the case of reusable resource, sets schedule(r, R)C and schedule(r, R)P contain the

same sets of transitions. If r is a reservoir resource then schedule(r, R)C and schedule(r, R)P

are disjoint sets containing the CONSUME and PRODUCE transitions respectively. For any

resource r,

schedule(r, R) = schedule(r, R)C ∪ schedule(r, R)P

Given a schedule for a resource r, let usage(r, t) represent the total amount of resource con-

sumption at time point t which is defined as the total consumption minus the total production

at t. Note that consumption events occur at the start and production event occur at the end.

usage(r, t) = ∑
TC

r ∈schedule(r,R)C

s.t. start[TC
r ]=t

req(TC
r )− ∑

TP
r ∈schedule(r,R)P

s.t. end[TP
r ]=t

req(TP
r ) (2.13)

For each resource r, level(r, t) describes the amount of resource available at the time point

t. Given a realization R, similar to the evolution of state variable, a evolution of the resource

over an interval [t, t′] describes the resource availability over the time interval.

Definition 6. Evolution of a Resource
For each resource r, evolution(r, [t, t′]) represents the evolution of the resource r as a set of

level values for r at each time point in [t, t′]. That means:

evolution(r, [t, t′]) = {level(r, t′′)|t ≤ t′′ ≤ t′} (2.14)

Where ∀t′′ : 0 ≤ level(r, t′′) ≤ capacity(r).

Constructing the Evolution on a Resource: Given a schedule on r, schedule(r, R), we

can construct the evolution of r over planning horizon [0, H] as the following:

• At time point t = 0, the level of resource is initial amount available of resource level

minus the resource usage at 0.

level(r, 0) = init(r)− usage(r, 0) (2.15)

• At each time point t, where 0 < t ≤ H the level of resource is calculated as the amount
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of resource available at t − 1 minus the total consumption at t. Note that, negative

consumption means production.

level(r, t) = level(r, t− 1)− usage(r, t) (2.16)

Given any time point t, where t ≥ 0, we can determine the value of level(r, t) using the

above two rules. Note that given a realization R each transition starts at or after time point 0.

Since all transitions have non-zero positive duration, and only CONSUME transitions consume

resource at start, at time point 0 for each resource r the value of usage(r, 0) will be always

non-negative. This means that in the evolution created from the realization R for each resource

the level of the resource at time point 0 always be less than or equal to the initial level, i.e.

level(r, 0) ≤ init(r), i.e. each evolution of a resource respects the initial condition on the

resource.

For each resource r since at each time point t, level(r, t)+ free-space(r, t) = capacity(r)
must hold, where free-space(r, t) describes the amount of free-space available, we can calcu-

late the amount of free-space available as the following:

free-space(r, t) = capacity(r)− level(r, t)

Each resource transition Tr, independent of their type (BORROW, PRODUCE or CONSUME),

reserves req(Tr) amount of free-space on r during their execution. Note that reservation re-

quests for free-space on same time points are additive. Let reserve(r, t) represent the total

amount reservation requests for free-space on the resource r at the time point t, which can

calculated as the following:

reserve(r, t) = ∑
Tr∈schedule(r,R)

s.t. start[Tr]≤t<end[Tr]

req(Tr) (2.17)

Recall that we call a execution of transitions on a resource r safe, if at each time point t
the level of the resource level(r, t) lies within the range [0, capacity(r)], and at each time

point the total required reservation of free-space is satisfied. Each schedule on a resource r for

a given realization R, schedule(r, R), represents an execution of transitions on the resource r.

Definition 7. Safe Schedule on Resource
A schedule schedule(r, R) on a resource r given a realization R is called safe, if it satisfies the

following two conditions:

1. The schedule(r, R) creates an evolution of the resource r, meaning the at each time point

t ∈ [0, H], level(r, t) ∈ [0, capacity(r)].

2. At each time point t ∈ [0, H], the total reservation of free-space must be less than or
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equal to the available amount of free-space on the resource.

free-space(r, t) ≥ reserve(sv, t) (2.18)

We will call a schedule on a resource a valid schedule if it is a safe schedule and achieves

the goal conditions if specified for the resource.

Definition 8. Valid Schedule on Resource
We call a schedule schedule(r, R) of realization R on the resource r a valid schedule if it

satisfies the following conditions.

1. it is a safe schedule as defined above.

2. at the end of the planning horizon the amount of resource in r is within the range defined

in goal(r).

level(r, H) ∈ goal(r) (2.19)

2.4.4 Solution To a Planning Problem

Given a realization of a flexible plan, R(FlexiPlan(P), if it creates valid schedules for each

state variable and resource, then it is called a valid realization.

Given a flexible plan for a planning problem FlexiPlan(P), let RFP represents the set of

all possible realizations. If each realization R ∈ RFP of a flexible plan is a valid realization,

then the flexible plan is called a valid flexible plan.

Definition 9. Solution
A solution to a planning problem P , is a valid flexible plan FlexiPlan(P).

2.5 Modeling Resource Usage of Actions

Our representation language allows expressive modeling capabilities for planning and schedul-

ing problems. Specially our representation of an action via transitions, which have different

durations and can have delay from the start of the action allows us to model complex actions.

In this section we discuss how we can discretize non-monotonic resource usage of actions into

monotonic resource usage, and how we can model monotonic resource usage in a fine-grained

discrete model.

2.5.1 Discretization of Non-Monotonic Resource Usage

A general model of resource usage can be arbitrarily complex. For example consider a move

action of a car that consumes some battery power and recharges the battery during its execution.
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Figure 2.13: Discretization of Action Resource Usage

Figure 2.13 describes the resource usage of such an action over an interval on a resource r,

where it consumes resource from t0 to t1, from t2 to t3, and from t4 to t5 at a fixed rate ratec,

and produces resource from t1 to t2, from t3 to t4, and from t5 to t6 at a fixed rate ratep. This

resource usage can be discretized as a sequence of CONSUME and PRODUCE transitions of

the action on the resource r as follows:

effect(r, Act) = {TC1
r , TP1

r , TC2
r , TP2

r , TC3
r , TP3

r }

where TC1
r , TC2

r , TC3
r are the CONSUME transitions and TP1

r , TP2
r , TP3

r are the PRODUCE

transitions on r. Table 2.1 describes the transitions with their type, offset values, durations, and

resource requirements. In this way we can model actions that have non-monotonic resource

usage in a discrete monotonic action model. Reasoning with monotonic action usage is simpler,

because it can be conveniently discretized as shown above.

2.5.2 Fine-grained Discretization of Monotonic Resource Usage

We have taken a conservative approach for modeling effects of resource transitions where

production and consumption events happen at the end and at the beginning of transitions re-

spectively, and transitions reserve free-space during their execution. This model, although

it makes pessimistic assumption about when a transition can start, guarantees the correctness
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Name Type offset duration req
TC1

r CONSUME 0 t1-t0 ratec*dur(TC1)
TP1

r PRODUCE t1-t0 t2-t1 ratep*dur(TP1)
TC2

r CONSUME t2-t0 t3-t2 ratec*dur(TC2)
TP2

r PRODUCE t3-t0 t4-t3 ratec*dur(TP2)
TC3

r CONSUME t4-t0 t5-t4 ratec*dur(TC3)
TP3

r PRODUCE t5-t0 t6-t5 ratec*dur(TP3)

Table 2.1: Description of Transitions of Discretized Action

of the resource usage over time. Consider the example discussed in the Transition subsection

(page 23), where actions AC and AP are modeled with one CONSUME and one PRODUCE

transition each and the duration of both these transitions are 4. Action AC consumes resource

at different consumption rates: during 0-1 it consumes 2 units, during 1-2 it consumes 1 unit,

from 2-3 it consumes 4 units and during 3-4 it consumes 2 units of resource. Action AP

produces resource at fixed rate of 2 units per unit of time. We modeled these transition in a

conservative coarse-grain discretized model, where if AC starts at t then AP could start earliest

at t + 4, and the amount of resource available to other actions from t to t + 8 is 1.

To estimate better lower bounds on action start times, we can further discretize these tran-

sitions in a more fine-grained manner by expressing these transitions as a sequence of unit
duration CONSUME and PRODUCE transitions on the resource r for actions. In this fine-

grained discretized model, action AC has the following sequence of CONSUME transitions on

r:

effect(r, AC) = {Tc1, Tc2, Tc3, Tc4}

and action AP has the following sequence of PRODUCE transitions on r:

effect(r, AP) = {Tp1, Tp2, Tp3, Tp4}

Table 2.2 lists the offset values and resource requirements of the transitions for action AC and

AP. Note that all transitions have unit duration.

AC Transition Offset Req AP Transitions Offset Req
Tc1 0 2 Tp1 0 2
Tc2 1 1 Tp2 1 2
Tc3 2 4 Tp3 2 2
Tc4 3 2 Tp4 3 2

Table 2.2: Transitions of Fine-grained Action

Given this fine-grained discrete model of action AC and AP, we can see that if AC starts
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Figure 2.14: Fine-Grained Discretization

Figure 2.15: Execution of Fine-Grained Discretized Transitions
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executing at time point t then AP can start executing as early as t + 2. This means that actions

AC and AP can overlap. This was not possible in the coarse-grained model. Fine-grained

discretization leads to a better mode of concurrency between action executions. The model of

the actions and their execution on the resource r is described in Figure 2.15. Also note that the

amount of resource available from t to t + 6 is always better than in the coarse-grained model,

which allows more actions to execute concurrently.

2.6 Summary

Our problem representation is based on multi-valued state variable representation of planning

problems with two extensions: explicit representation of two types of resources and richer

action model, where each effect of an action is typed, has variable duration and can start after a

delay from start of the action. As a solution to the planning problem we create a flexible plan.

Flexible plans are important in the sense that they are more resilient to uncertainties like delay

of action starts exogenous events etc. A flexible plan represents a set of possible execution of

the plan. The more possible executions a plan represents the more flexible, i.e resilient to the

uncertainty it is.

As discussed in the beginning of this chapter, our representation is closely related to

ANML [15]. Our representation is less expressive than ANML in sense that it can’t repre-

sent HTN planning problems fully (but can represent certain aspect of it using action inclusion

and exclusion constraints, see Section 5.4.2), and only allows actions to have certain types of

effects on state variables and resources. Note that although ANML is a very expressive lan-

guage, there exists no planner that can solve a problem described in ANML. In the next chapter

we show that how a planning problem described in our representation, can be complied to a

constraint satisfaction problem (CSP). We also show how a flexible plan can be extracted from

the solution to the compiled CSP.



Chapter 3

Compilation: Transition-based
Formulation

Compilation is a technique that converts a given problem in one representation to another

representation, such that a solution to the problem in latter representation is also a solution to

the problem in first representation. The main reason for compilations from one representation

to another is that we have efficient solving methods available for problems described in the

complied representation. In this chapter we will describe how to compile a problem represented

in the problem description language represented in the previous chapter to a CSP by bounding

the number of instances for each action. Given the relative simplicity of temporal constraint

representation and efficient inference techniques developed in constraint-based scheduling, we

believe CSP is best suited for solving the problems that lie inbetween planning and scheduling.

3.1 Background and Related Work

Kautz and Sellman [35] were the first to describe a reduction technique that converts a plan-

ning problem into a SAT problem. The main idea was to bound the planning problem by

its makespan or number of time-steps, convert the bounded problem to a SAT problem, and

solve it using a SAT solver. If no solution is found given the bound on makespan, the bound

is increased and the process repeats until the first solution is found. There are other plan-

ners ([22, 57, 30]) that have been developed based on this basic idea. Similar compilation

techniques are developed to convert planning problems to other constraint-based search prob-

lems. Planners like CPlan [51] and GP-CSP [19] converts a planning problem to a CSP, and

ILP-Plan [34] converts to a integer linear program (ILP). The CTN [43] planner converts a

planning problem described in a timeline-based representation to a CSP based on the time-step

bound approach as the planners above. The main difference here is that CTN encodes the size

of the bound as a decision variable as well.

An alternative bounding approach is taken in CPT [52] that compiles a planning problem

into a CSP by bounding the planning problem by number of times an action can occur in the

41
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final plan. This means, first it assumes each action will occur at most once, and compiles the

problem into a CSP. If the resultant CSP has no solution it increases the bound and converts

the problem again. CPT’s constraint model is based on the working of a partial-order planner

(POP) [55] where causal links play a central role.

A POP planner starts with a partial plan containing two dummy actions: START and END.

The START action represents the achievement of the initial state. It has no pre-condition and

its add-effects are the initial conditions of the state variables. Similarly, the FINISH action

represents the achievement of the goals. It has goal conditions as its pre-condition and no

effects. At each planning step a POP algorithm refines the partial plan by adding actions into

the plan and maintaining consistency among them, until it achieves a complete plan. The core

of a POP algorithm is a concept called causal link. A causal link is written as a[p]a′. It

represents that the action a supports the action a′ by achieving one of its pre-condition p. Each

causal link implies a precedence relation a → a′, which means that a must finish executing

before a′ starts. The consistency is maintained by resolving threat to a causal link a[p]a′. An

action b is a threat to the causal link if b makes p false as its effect and there is no precedence

relation between a and b, and no precedence relation between a′ and b. A POP algorithm at

each step adds a causal link to provid support to pre-conditions of actions already added to

the partial plan, and resolves any threats by posting additional precedence constraints. The

algorithm stops when there are no pre-conditions left to be supported and there are no threats

to any causal links.

Our constraint model is based on the ideas explored in CPT. We also bound a planning

problem by the number of instances for each action, and compile the planning model into a

CSP. Our constraint model for the state variable transitions is based on the concept of causal

links, and the constraint model for the resource transitions is based on support links which

can be thought of causal links for resources.

3.2 Overview of the Constraint Model

We want to produce a flexible plan, where start times of actions are not fixed, but constrained by

distance constraints between each pair of actions. Recall that a flexible plan is called a solution

to the planning problem, if and only if all its possible realizations are valid. A realization is

valid, if it generates a valid schedule for each state variable and resource in the problem. This

means that each solution flexible plan represents a set of valid schedules on each state variable

and resource.

To build a solution for a given planning problem we take a bottom-up approach by posting

ordering/precedence constraints between transition pairs on each resource and state variable.

Each precedence constraint (or ordering) implies a temporal constraint, that the transitions

can’t overlap during execution. Each temporal separation due to a precedence constraint be-
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tween a pair of transitions puts a distance constraint between their corresponding actions’ start

times. This is the case because the start times of transitions are synchronized with the start

times of their actions. This approach is known as Precedence Constraint Posting (PCP)[48] in

the constraint-based scheduling literature.

This chapter describes the constraint model for planning problems. The model assumes

the number of occurrence of each action is bounded (as in CPT [52]). It includes constraint

models for actions, state variables and resources. The main idea of the constraint model is to

find out what actions should be in the plan and for state variables and resources how transitions

are going to be supported. The constraint model has two layers : the first layer includes the

constraint model for actions, where we decide which actions are included in the plan, and

maintain the distance constraints between the start times of the included actions, and the second

layer includes a constraint model for each state variable and resource. For each domain object,

the constraint model contains the included transitions on the domain object and maintains the

precedence constraints between them. The constraint models for resources and state variables

in the second layer do not interact with each other directly, they interact via the constraint

model for actions in the first layer.

Note that on each state variable, the transitions are totally ordered, except for PREVAIL

transitions that require the same state, and all transitions pre-conditions must be satisfied.

The constraint model for each state variable can be thought of as the constraint model for

causal links between pairs of state variable transitions. Recall that in partial order planning

(POP)[37], a causal link a[p]a′, represents the fact that action a achieves the pre-condition p
for action a′. In our representation, given a state variable sv, a causal link is represented as

Tsv[s]T′sv, where Tsv is an EFFECT transition and T′sv is either an EFFECT or a PREVAIL

transition on sv, and s is a state of sv, i.e. s ∈ dom(sv). It represents that the EFFECT tran-

sition Tsv achieves the state s, where s is the pre-condition of T′sv. When we say that a causal

link Tsv[s]T′sv holds, it means that in the final plan Tsv achieves the pre-condition of T′, which

implies a precedence constraint between Tsv and T′sv. For each EFFECT transition Tsv on sv
that achieves state s, there can be more than one EFFECT transition T′sv such that Tsv[s]T′sv

is a possible causal link. For any given EFFECT transition Tsv that must execute on the state

variable sv, at most one such causal link will hold in the final plan, because all EFFECT transi-

tions must be totally ordered. To solve the constraint problem on each state variable, we decide

which causal links hold in the final plan, and impose the precedence constraints between those

pairs of transitions.

Given a resource and the set of activities (transitions in our case), resource reasoning in the

PCP approach is generally done in two steps [21]: first find a subset of activities that overlap

in time and together produce or consume more resource than the capacity of the resource (this

set is also known as peak), and second, put enough precedence constraints between pairs of

activities (note that each precedence constraint makes the pair of activities non-overlapping) in
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the peak such that the subset of overlapping transitions’ total production or consumption lies

between 0 and the capacity of the resource.

In our constraint model for resources, we have chosen a different resource reasoning ap-

proach than the two step procedure described above. Our resource reasoning is based on the

idea of modelling causal links on state variables. The constraint model for each resource is

based on deciding the support links between pairs of transitions on the resource. On a re-

source r, a support link, Tr[δ]T′r , represents that transition Tr provides δ amount of resource

towards the requirement of T′r . If δ = 0, it means Tr does not provide any support to T′r . If

δ > 0, then the support link implies a precedence relation between Tr and T′r . By deciding how

transitions provide support to other transitions, i.e. creating support links, we build a schedule

on each resource.

Each causal and support link implies a precedence or ordering relation between a pair of

transitions. A precedence relation between two transitions T → T′ means that T′ starts after T
finishes its execution. Since each transition is non-preemptive, and the start times of transitions

and their corresponding actions are synchronized, each precedence constraint puts a distance

constraint between the start times of the actions of the transitions. The constraint model for

actions maintains the consistency of these distance constraints.

As described before, our constraint formulation has two layers, where the first layer in-

cludes the constraint model for actions, and the second layer includes a constraint model for

each resource and state variable. Each constraint model in the second layer interacts with the

action constraint model in the first layer via two types of constraints:

• If an action is included in the plan, then all its transitions are also included in the

plan/schedule of the state variables/resources that the transition affects, and vice versa.

• Start times of actions and their transitions are synchronized.

Note that in the second layer, the constraint models for state variables and resources do not

interact with each other directly.

Since the constraint model of transitions plays a central role here, we call it The Transition-
based Constraint Formulation of the planning problem. An overview of the Transition-based

Constraint Formulation is shown in Figure 3.1. The action level maintains the distance con-

straints between the action start times, and at the domain object level, each state variable and

resource constraint model maintains the precedence constraints between transition pairs on

them. To solve a planning problem, we first compile the given problem into a CSP, and solve

the CSP by selecting actions to include in the plan, and selecting causal and support links such

a way that

• The initial and goal conditions are satisfied
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Figure 3.1: Overview of The Transition-based Constraint Formulation

• On each state variable, all transitions are totally ordered, except for the PREVAIL tran-

sitions on the same state, and each state variable transitions’ pre-conditions are satisfied.

• On each resource all resource transitions requirements are fulfilled and the resource is

not over or under consumed produced or borrowed at any time point.

A solution to the constraint model, that includes constraint models for state variables, resources

and actions, represents a solution to the planning problem and the action layer represents the

solution flexible plan for the given problem.

In this chapter we describe how we compile a planning problem to a transition-based con-

straint formulation. Before we describe the constraint model, the next section describes a

pre-compilation step that adds some dummy actions and states to state variables to the original

problem to make the compilation intuitive and straightforward. Then we describe the con-

straint variables for actions and transitions. Lastly we list the constraints relating the variables

in the transition-based formulation.

3.3 Pre-Compilation of a Planning Problem

Recall that a planning problem is defined as P =< Rreuse, Rreserve, SV, A, H, init, goal >,

where Rreuse and Rreserve are the sets of reusable and reservoir resources respectively; SV is

the set of state variables; A is the set of actions; H is the planning horizon; init is the initial

configuration of the problem, and goal is the goal description. Note that for each state variable
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and resource the initial state is defined in init. For each resource the goal condition is defined

in goal. Unlike resources, goal states are defined only for a subset of state variables. We will

call the subset of state variables that have goal states goal state variables, and the subset of

state variable that have no goal states, non-goal state variables.

To compile a planning problem into a constraint problem, we need to ensure that each

action (transition), that is included in the plan is supported. In addition to that the constraint

problem should also reflect the achievement of initial conditions (described in init) and goal

conditions (goal). Before we compile a planning problem into the transition-based formu-

lation, we add new states to the domain of state variables, and new actions and transitions,

such that the new planning problem (old problem representation + additional states,actions and

transitions) corresponds to the original problem but make our compilation to transition-based

formulation, that ensures the achievement of initial and goal conditions, easier.

3.3.1 Additional States for State Variables

To provide a uniform represenation for state variable evolution, for each state variable sv ∈ SV
we add two additional states to its domain of possible states: startsv and endsv. Each state

variable evolution would start from the startsv and end at endsv. The only possible transition

from startsv is to the initial state init(sv), and the only possible transition to endsv is from

goal(sv). Since for non-goal state variables goal(sv) is not defined, for each non-goal state

variable sv′ we introduce a state, pseudo goal, or PGsv′ in short, into the domain of sv′, where

goal(sv′) = PGsv′ . Figure 3.2 describes the changed domains of two state variables: one

with a goal state (top) and one without a goal state (bottom). The dotted circles represent the

additional states.

3.3.2 Dummy Start and End actions

We add two dummy actions Start and End into the set of actions A, where Start and End
mark the achievement of the initial state and goal respectively. The Start action is constrained

to appear at the beginning of the plan, before any other action in the plan, and the End action is

constrained to appear at the end of the plan, after every other action. Introducing these dummy

Start and End actions is a standard practice in modeling partial order causal link (POCL)

planning [37, 52], as well as in resource constrained project scheduling problems (RCPSP)

[9]. Note that all transitions of all dummy actions, Start, End and other dummy actions that

we introduce below, have duration 0. Dummy action Start starts at time point 0 and the End
actions starts at the time point H.

On each state variable sv ∈ SV, the Start action has an EFFECT transition Tstart
sv that

changes the state of sv from the dummy startsv state to the initial state init(sv), representing

the achievement of the initial state of sv. That means pre(Tstart
sv ) = startsv and post(Tstart

sv ) =
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Figure 3.2: Additional States and Transitions on State Variables

init(sv). The End action has an EFFECT transition Tend
sv on each state variable sv that changes

its state form either the goal or the pseudo goal state to the endsv state. For each goal state

variable sv, pre(Tend
sv ) = goal(sv) and post(Tend

sv ) = endsv, and for each non-goal state

variable sv′, pre(Tend
sv ) = PGsv′ and post(Tend

sv ) = endsv′ , Tend
sv′ that changes the state PGsv′

to endsv′ . All other transitions on each state variable sv must start after Tstart
sv and finish before

Tend
sv as described in the Figure 3.2.

Similar to state variables, on each resource r ∈ Rreserve ∪ Rreuse, the Start action has a re-

source transition Tstart
r , and the End action has a resource transition Tend

r . All other transitions

on the resource r are constrained to start their execution after Tstart
r and finish their execution

before Tend
r . The dummy start transition Tstart

r on a resource r represents the availability of

capacity(r) amount of space in r at the time point 0, and the dummy end transition Tend
r repre-

sents that the space in r becomes unavailable at the time point H, i.e. at the end of the planning

horizon. This means that, for each resource r, req(Tstart
r ) = req(Tend

r ) = capacity(r). The

types of the dummy start and end transitions on a resource depends on the type of resource. On

reusable resources, dummy start and end transitions are BORROW transitions. On reservoir

resources, dummy start and end transitions have a special type, where they are considered as

both PRODUCE and CONSUME transitions.

3.3.3 Dummy Actions on Reservoir Resources

For a reusable resource the initial and goal level has no meaning. This is because transitions can

only borrow a reusable resource, and can not consume or produce separately. So for a reusable
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Figure 3.3: Dummy Consumption and Production transitions on reservoir resource

resource r, init(r) = capacity(r) = goal(r). On the other hand, for all reservoir resource

r ∈ Rreserve, init(r) defines how much resource is available to use at the start of the plan.

Note that the dummy start transition Tstart
r on a reservoir resource r marks the availability of

capacity(r) amount of space, and is a special type of transition that can be both a PRODUCE

and CONSUME transition. To model that on the resource r, at the beginning the amount of

resource available to consume is init(r) and in the resource capacity(r) − init(r) amount

of free-space exits at start, we create two dummy actions: a consume action StartConsumer,

and a production action StartProducer. Action StartProducer has a PRODUCE transition

TStartProduce
r on the reservoir resource r that produces init(r) amount of resource. Action

StartConsumer has a CONSUME transition on r TStartConsume
r that consumes capacity(r)−

init(r) amount of resource r. This means that:

req(TStartProduce
r ) = init(r) & req(TStartConsume

r ) = capacity(r)− init(r)

On each reservoir resource these dummy actions are always included in the final plan, and their

transitions are constrained to appear immediately after the dummy start transition. This means

that on each reservoir resource, there will be no other transition executing in between Tstart
r and

TStartConsume
r and TStartProduce

r as described in Figure 3.3. Note that all these dummy transitions

have duration 0. By introducing these dummy consumption and production transitions at the

start we simulate the situation where at the start, on a reservoir resource r the resource level is

init(r) and the amount of free-space on r is capacity(r)− init(r).
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For each reservoir resource r goal(r) = [minr, maxr] defines that at the end r should

have atleast minr amount of resource left, and at least capacity(r)− maxr amount of free-

space. This means that there must be a set of PRODUCE transitions finishing their execution

before the dummy end transition Tend
r , such that their total production is minr, and there will

be no other transition executing between this set of transitions and Tend
r . Similarly, there must

be a set of CONSUME transitions, that consumes capacity(r)− maxr amount of resource,

finishing immediately before Tend
r . To make sure that this condition holds, for each reservoir

resource r we create another two dummy actions: EndProducer, and EndConsumer. Action

EndConsumer has a CONSUME transition on r TEndConsume
r that consumes minr amount

of resource, and action EndProducer has a PRODUCE transition TEndProduce
r that produces

(capacity(r)−maxr)) amount of resource. This means that:

req(TEndConsume
r ) = minr & req(TEndProduce

r ) = capacity(r)−maxr

Like before, these dummy actions are always included in the plan, and the transitions are

constrained to execute immediately before Tend
r as described in the Figure 3.3. Note that these

transitions always start executing at the end of the planning horizon H and have duration 0. If

a CONSUME transition is included in the plan (it means if its corresponding action is included

in the plan), then there must be enough resource available to consume at start of its execution.

Similarly, if a PRODUCE transition must execute on a resource, there must be enough free-

space available to reserve. By introducing these end dummy actions on a reservoir resource

r, we make sure that each solution must produce at least minr amount resource and at least

capacity(r) − maxr amount of free-space before the time point H. Note that by requiring

that each solution must produce capacity(r)− maxr amount free-space, we make sure that

each solution creates at most maxr amount of resource before H, not more than that.

Note that if capacity(r)− init(r) = 0, then we don’t create the dummy action StartConsumer.

Similarly, if minr = 0, then we don’t create the action EndConsumer and if capacity(r)−
maxr = 0, then we don’t create the dummy action EndProducer.

3.3.4 Dummy Actions on Non-Goal State Variables

For a non-goal state variable sv, goal(sv) = PGsv, and the dummy transition Tend
sv changes

PGsv to endsv. The non-goal state variable sv is allowed to end at any state s ∈ dom(sv),
except for the states in non-final(sv). To represent the transition from the end state of sv to

PGsv, for each non-goal state variable sv we add an action actPG s
sv for each of its possible states

s, i.e. s ∈ dom(sv), where s is not startsv, or endsv or PGsv, and s /∈ non-final(sv). Each

action actPG s
sv has an EFFECT transition, TPG s

sv , shown as the bold dotted lines (TD1, TD2, TD3)

in Figure 3.2, that changes the state s to PGsv, i.e. pre(TPG s
sv ) = s and post(TPG s

sv ) = PGsv.

These dummy actions force the end of the evolution of states for the non-goal state variables by
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changing current state to PGsv, which then supports towards the activation of the End action,

which marks the end of the plan. For each valid plan exactly one of these dummy actions must

execute before the End action. In other words exactly one of these actions will be included in

the final plan.

The aim of these additional states is to give a uniform structure to each state variables state-

evolution where each evolution starts with the dummy start transition Tstart
sv and ends with the

dummy end transition Tend
sv , and on each resource the first and last transition will be Tstart

r and

Tend
r respectively. Note that all dummy transitions on state variables and resources, described

in this section, have dur(T) = 0.

3.4 The Constraint Model: Transition-based Formulation

Given a planning problem, its not known in advance that how many actions we need to solve

the problem. To compile a planning problem to a constraint satisfaction problem, we need to

bound the planning problem in some way. Because we need a finite number of variables and

constraints. Constraint variables are based on action instances and their transitions. Since we

don’t know the number of possible occurrence of actions we need to estimate it before we can

compile them to transition-based constraint formulations.

Planning problems that lie on the border of planning and scheduling often need an action

at most once in solution [52]. This observation leads us to start with a CSP encoding where

each action can occur at most once. If the encoding proved to be insoluble, then we increase

the bound by one. This means that we add an extra copy of each action and search again.

This process will be repeated until a solution is found. This is similar to other constraint-based

planning approaches where, generally, the bound is on the makespan of the plan ([35],[19]). In

other words by limiting each action occurrence to maximum one, we eliminate the difference

between an action and its instance.

Given this bound, that is each action can occur at most once, we can compile the bounded

planning problem into the Transition-based Formulation. The transition-based formulation

can be seen as consisting of two layers: constraint layer for actions, and each state variable

and resource having their own constant model based on the transitions on them, which are con-

strained via support relations. Each support relation between two transitions on state variables

and resources implies an temporal distance constraint between their corresponding action start

times and each action start times are synchronized with the start time of the transitions. Fig-

ure 3.1 shows an overview of the Transition-based formulation, and how different layers are

related via start time constraints between transitions and actions.

In the following sections we first describe the constraint variables for actions and transi-

tions for the transformed planning problem. Then we list the constraints on these variables
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capturing the interaction between transitions and actions.

3.4.1 Action Variables

For each action a ∈ A ∪ {DUMMY Actions}, we create the following variables:

• start(a) denoting the start time of the action a which is an integer interval.

• inplan(a) is a boolean variable, meaning domain of inplan(a) is {true, f alse}, where

inplan(a) = true means the action a is included in the final plan, and inplan(a) =

f alse means the action a is excluded from the plan. We will denote inplan(a) = true as

inplan(a), and inplan(a) = f alse as ¬ inplan(a). We will say action a is Undecided

if inplan(a) not assigned to be true or false.

3.4.2 Transition Variables

For each transition, either it be a state variable transition or a resource transition we create

three variables similar to actions variables: start(T), end(T), and inplan(T).

3.4.2.1 Variables for State Variable Transition

Given an EFFECT transition Tsv on a state variable, pre(Tsv) denotes the pre-condition, and

post(Tsv) denotes the post-condition of Tsv. This means that when Tsv starts its execution

the state of sv must be pre(Tsv), and the state of sv must be post(Tsv) when Tsv finishes

its execution. We say the Tsv achieves the state post(Tsv) from the state pre(Tsv). For a

PREVAIL transition Tp
sv, req(Tp

sv) denotes the state that sv must be in during the execution of

Tp
sv. This means that for each PREVAIL transition Tp

sv, pre(Tp
sv) = post(Tp

sv) = req(Tp
sv).

Each pair of state variable transitions < Tsv, T′sv > on a state variable sv, where Tsv is

an EFFECT transition and it achieves the pre-condition of T′sv, is called an achieve-relevant
pair. Recall that both Tstart

sv and Tend
sv are EFFECT transitions. In each achieve-relevant pair

< Tsv, T′sv >, Tsv is an EFFECT transition, and T′sv can be either a PREVAIL transition, or

an EFFECT transition. This is because, only EFFECT transition causes a state variable state

to change, thus achieve a state. PREVAIL transitions doesn’t achieve any state. Each achieve-

relevant pair of transitions represents a possible causal link.

The dummy start transition on sv, Tstart
sv , is constrained to appear before any other transition

on sv and it does not needed to be supported. This means that each pair of state variable

transitions < Tsv, Tstart
sv > is not achieve-relevant. Similarly, since the end transition on

sv, Tend
sv is constrained to appear after all other transitions on sv, Tend

sv does not support any

transition. This means that each pair < Tend
sv , Tsv > is not achieve-relevant. We define an

achieve-relevant pair of state variable transitions as the following.
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Definition 10. Achieve-Relevant Pair
A pair of transitions < Tsv, T′sv > on a state variable sv, is called an achieve-relevant pair if

the following conditions are true:

• Tsv is an EFFECT transition, because only EFFECT transitions can cause change of

state.

• Tsv achieves the pre-condition of T′sv, i.e. post(Tsv) = pre(T′sv).

• T′sv 6= Tstart
sv , because no transition can achieve the pre-condition of Tstart

sv .

• Tsv 6= Tend
sv , because Tend

sv can’t achieve any other transitions’ pre-condition.

Achieve Variables: Let AC(sv) represent the set of achieve-relevant pairs of state variable

transitions on the state variable sv. For each pair < Tsv, T′sv >, such that < Tsv, T′sv >∈
AC(sv) we create a constraint variable: achieve(Tsv, T′sv), which can assume two possible

values 0, or 1. achieve(Tsv, T′sv) = 0 means that Tsv doesn’t achieve pre-condition of T′sv,

and achieve(Tsv, T′sv) = 1 means that Tsv achieves the pre-condition of T′sv. Recall that each

achieve-relevant pair represents a possible causal link. If achieve(Tsv, T′sv) = 1, then the

causal link Tsv[pre(T′sv)]T′sv holds in the final plan.

Note that on a state variable sv all EFFECT transitions must be totally ordered. Each

PREVAIL transition on sv, Tp
sv, must execute between two EFFECT transitions, where the first

EFFECT transition achieves the state req(Tp
sv), and the second EFFECT transition changes

the state req(Tp
sv) to another state. This means that each PREVAIL transition must have an

EFFECT transition that executes immediately after it in the final plan, as illustrated in Figure

3.4 (page 56).

Definition 11. Can-Follow Pair
On a state variable sv, each pair of state variable transitions < Tp

sv, Te
sv >, where Tp

sv is a

PREVAIL transition and Te
sv is an EFFECT transition, where Te

sv 6= Tstart
sv , is called a can-

follow pair, if pre(Te
sv) = req(Tp

sv). This means that Te
sv can follow Tp

sv immediately after.

Follow Variables: Let FL(sv) represent the set of can-follow pairs of transitions on the

state variable sv. For each pair of transitions Tp
sv, and Te

sv, such that < Tp
sv, Te

sv >∈ FL(sv),
we create a constraint variable follow(Tp

sv, Te
sv) that can either be 1 meaning Te immediately

follows Tp in the final plan, or 0 otherwise. This means that, if follow(Tp
sv, Te

sv) = 1, then no

other EFFECT transition can execute between the end of Tp
sv and the start of TE

sv.

3.4.2.2 Variables for Resource Transition

Similar to the achieve-relevant pairs of state variable transitions, a pair of resource transitions

< Tr, T′r > on a resource r, is called a support-relevant pair if Tr can provide some amount

of resource towards the fulfillment of T′r’s requirement.
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On each resource r ∈ Rreuse ∪ Rreserve, the dummy start transition Tstart
r must appear

before any other transition and its requirement is always satisfied. This means that each pair

of transitions on r, < Tr, Tstart
r >, is not a support-relevant pair. Similarly, since the dummy

end transition Tend
r is constrained to appear after all transitions on r, thus does not provide any

support to other transitions, each pair of transitions < Tend
r , Tr > is not a support-relevant

pair.

Recall that all resource transitions on a reusable resource r ∈ Rreuse are of type BORROW,

including the dummy start transition Tstart
r and the dummy end transition Tend

r . Each Borrow

transition Tr on r needs req(Tr) amount of resource at start and can provide req(Tr) amount

of resource to other BORROW transitions on the same resource when it finishes its execution.

That means each pair of BORROW transitions on a reusable resource are support-relevant.

Definition 12. Support-Relevant Pair on Reusable Resources
On a reusable resource r, each pair of transitions < Tr, T′r >, where Tr 6= Tend

r , T′r 6= Tstart
r ,

and Tr 6= T′r , is a support-relevant pair.

On a reservoir resource r ∈ Rreserve, transitions can be either PRODUCE or CONSUME

resource transitions, except for the dummy start and end transitions. The dummy start and end

transitions are considered as both PRODUCE and CONSUME transitions. Each PRODUCE

transition consumes req(Tp
r ) amount of free-space at start and produces req(Tp

r ) amount of

resource at end, and each CONSUME transition consumes req(Tc
r ) amount of resource at start

and produces req(Tc
r ) amount of free-space at end. This means that a PRODUCE transition

produces resource that can be consumed by CONSUME transitions, and a CONSUME transi-

tion produces free-space that can be used by PRODUCE transitions. Form this point of view

we can see that each pair of transitions on a reservoir resource, where one is a PRODUCE

transition and the other one is a CONSUME transition, is a support-relevant pair, but any pair

of transitions where both transitions have the same type is not support-relevant.

Definition 13. Support-Relevant Pair on Reservoir Resources
Each pair of transitions < Tr, T′r > on a reservoir resource r, where Tr 6= Tend

r , T′r 6= Tstart
r ,

and Tr 6= T′r , is called a support-relevant pair if the following conditions are true:

• If Tr is a PRODUCE transition, then either T′r is a CONSUME transition or T′r = Tend
r

• If Tr is a CONSUME transition, then either T′r is a PRODUCE transition or T′r = Tend
r

Support Variables: For each resource r ∈ Rreuse ∪ Rreserve, let SUP(r) represent the

set of support-relevant transition pairs on the resource. For each pair of resource transitions

< Tr, T′r >∈ SUP(r), we create a variable support(Tr, T′r) which represents the amount of

resource (a non-negative integer) Tr provides to T′r . For any given support-relevant pair of



54 Compilation: Transition-based Formulation

transitions < Tr, T′r >, if δTr ,T′r denotes the maximum amount of resource that Tr can provide

to T′r , then

δTr ,T′r = min
(
req(Tr), req(T′r)

)
The domain of each support(Tr, T′r) is the interval [0, δTr ,T′r ], where 0 indicates that Tr does

not support T′r .

3.4.3 Constraints

In the following we describe the constraints for the transition-based formulation based on the

variables described above.

3.4.3.1 Non-preemptive Transitions

Transitions are non-preemptive, this means that they can’t be preempted once they start execu-

tion. The following non-preemptive constraint holds for each transition T.

Constraint 1. For each transition T, end time of T is the sum of the start time of T and

duration of T.

end(T) = start(T) + dur(T) (3.1)

3.4.3.2 Action Synchronization Constraints

The start time of each transition of an action is synchronized with the start time of the action.

Recall that each transition has an offset value (non-negative) that represents the delay between

the start of the action and start of the transition.

Constraint 2. For each action a ∈ A, for all transition T, such that T ∈ trans(a), the start

time of T is the sum of the start time of a and the offset value between the start of a and the

start of T.

start(T) = start(a) + offset(T) (3.2)

3.4.3.3 Horizon Constraints

Each plan must be executed within the interval [0, H]. This means that each action (including

the dummy actions) in the plan must start after time point 0.

Constraint 3. Each action a, including the dummy actions, must start after time point 0

∀a : 0 ≤ start(a) (3.3)
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Since transitions start times are delayed from the start of their corresponding actions (Con-

straint 2), this constraint implies that each transition must start after 0.

All actions in a plan must end before time point H. An action ends when all its transitions

end.

Constraint 4. Each transition must end before H.

∀T : end(T) ≤ H (3.4)

Note that each transition (including the dummy transitions) has a non-negative duration.

This constraint with Constraint 1 and Constraint 2 implies that each transition and action must

start before H.

3.4.3.4 Action Activation Constraint

If an action is in the plan, i.e. inplan(a) = true, then all its transitions are also in the plan

and if an action is excluded from the plan, inplan(a) = f alse, then all its transitions are also

excluded from the plan.

Constraint 5. For each action a ∈ A and for all transition T ∈ trans(a) the following

constraint holds:

inplan(a)⇔ inplan(T) (3.5)

3.4.3.5 State Variable Support Constraints

Let trans(sv)E, and trans(sv)P represent the set of EFFECT and PREVAIL transitions re-

spectively on a state variable sv, and trans(sv) = trans(sv)E ∪ trans(sv)P. Note that the

dummy start Tstart
sv and the dummy end transition Tend

sv on sv are EFFECT transitions, i.e.

Tstart
sv , Tend

sv ∈ trans(sv)E. On each state variable sv, all EFFECT transitions that are included

in the plan must be sequenced, since only one action changes states at a time. PREVAIL tran-

sitions that are included in the plan must be sequenced in between two consecutive EFFECT

transitions. This means that each included EFFECT transition achieves the pre-condition of ex-

actly one EFFECT transition and zero or more PREVAIL transitions, all included transitions’

pre-conditions must be achieved by exactly one EFFECT transition, and for each included

PREVAIL transition there will be exactly one EFFECT transition that will follow it. The fol-

lowing three constraints achieves these facts.

Recall that AC(sv) represents the set of achieve-relevant pairs on the state variable sv,

and for each pair < Tsv, T′sv >∈ AC(sv), Tsv 6= Tend
sv , T′sv 6= Tstart

sv , and Tsv 6= T′sv. Also note

that in each achieve-relevant pair < Tsv, T′sv >, Tsv is always an EFFECT transition.
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Figure 3.4: EFFECT-PREVAIL Contiguous Relation

Constraint 6. For each transition Tsv ∈ trans(sv), where Tsv 6= Tstart
sv , and Tsv is included

in the plan, there exists exactly one EFFECT transition the achieves its pre-condition.

inplan(Tsv)⇔ ∑
<T′sv ,Tsv>∈AC(sv)

achieve(T′sv, Tsv) = 1 (3.6)

Constraint 7. For each EFFECT transition TE
sv ∈ trans(sv)E, where TE

sv 6= Tend
sv , if TE

sv

is included in the plan, then it must achieve the pre-condition of exactly one other EFFECT

transition.

inplan(TE
sv)⇔ ∑

<TE
sv ,TE′

sv >∈AC(sv) s.t.TE′
sv ∈trans(sv)E

achieve(TE
sv, TE′

sv ) = 1 (3.7)

For a state variable sv, FL(sv) represents the set of can-follow pairs of transitions on sv.

For each pair < Tsv, T′sv >∈ FL(sv), Tsv is a PREVAIL and T′sv is an EFFECT transition,

where T′sv 6= Tstart
sv .

Constraint 8. For each PREVAIL transition TP
sv ∈ trans(sv)P on a state variable sv, if TP

sv is

included in the plan then there exists exactly one EFFECT transition on sv that will follow it

immediately.

inplan(TP
sv)⇔ ∑

<TP
sv ,Tsv>∈FL(sv)

follow(TP
sv, Tsv) = 1 (3.8)

An EFFECT transition can achieve the pre-condition of exactly one EFFECT transition and

zero or more PREVAIL transitions as described above. If an EFFECT transition Tsv achieves
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the pre-conditions of an EFFECT transition T′sv and a PREVAIL transition TP
sv, then the PRE-

VAIL transition TP
sv must execute between Tsv and T′sv, and T′sv must follow TP

sv immediately.

Consider the situation in Figure 3.4, where EFFECT transition T1 achieves the pre-conditions

of EFFECT transition T2 and PREVAIL transition T3. In this case T2 must immediately follow

T3.

Constraint 9. For each triplet < Tsv, TP
sv, T′sv >, where Tsv, T′sv ∈ trans(sv)E, TP

sv ∈
trans(sv)P, < Tsv, TP

sv >,< Tsv, T′sv >∈ AC(sv), and < TP
sv, T′sv >∈ FL(sv), if Tsv

achieves the pre-conditions of TP
sv and T′sv, then T′sv must immediately follow TP

sv.(
achieve(Tsv, T′sv) = 1 ∧ achieve(Tsv, TP

sv) = 1
)
⇒ follow(TP

sv, T′sv) = 1 (3.9)

When an action is decided to be excluded from the plan, ¬ inplan(a), then all its transi-

tions are also excluded from the plan, as stated above. Each excluded EFFECT transition can’t

achieve the pre-condition of any other state variable transition and no other EFFECT transition

achieves its pre-condition. Also, for each excluded PREVAIL transition, no EFFECT transition

follows it.

Constraint 10. For each transition Tsv ∈ trans(sv), if Tsv is excluded from the plan, then no

EFFECT transition achieves its pre-condition.

¬ inplan(Tsv)⇔ ∑
<T′sv ,Tsv>∈AC(sv)

achieve(T′sv, Tsv) = 0. (3.10)

Constraint 11. For each EFFECT transition TE
sv ∈ trans(sv)E, if TE

sv is excluded from the

plan, then it can’t achieve the pre-condition of any transition.

¬ inplan(TE
sv)⇔ ∑

<TE
sv ,T′sv>∈AC(sv)

achieve(TE
sv, T′sv) = 0. (3.11)

Constraint 12. For each PREVAIL transition TP
sv ∈ trans(sv)P, if TP

sv is excluded from the

plan, then no EFFECT transition can follow it.

¬ inplan(TP
sv)⇔ ∑

<TP
sv ,T′sv>∈FL(sv)

follow(TP
sv, T′sv) = 0. (3.12)

3.4.3.6 Resource Support Constraints

For each resource r ∈ Rreuse ∪Rreserve, if a transition Tr is included in the plan, then its require-

ment must be satisfied, except for the dummy start transition Tstart
r . Also each included tran-

sition on a resource provides same amount of support to fulfill other transitions’ requirements,

except for the dummy end transition Tend
r . Note that here the requirement of a transition can
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be either resource (for BORROW and CONSUME transitions) or free-space (for PRODUCE

transitions).

On each resource r, SUP(r) represents the set of support-relevant transition pairs on the

resource, and for each pair < Tr, T′r >∈ SUP(r), Tr 6= Tend
r , T′r 6= Tstart

r , and Tr 6= T′r .

Constraint 13. For each resource transition Tr ∈ trans(r), where Tr 6= Tstart
r , if Tr is in-

cluded in the plan, then its requirement must be satisfied.

inplan(Tr)⇒ ∑
<T′r ,Tr>∈SUP(r)

support(T′r , Tr) = req(Tr) (3.13)

Constraint 14. For each resource transition Tr ∈ trans(r), where Tr 6= Tend
r , if Tr is in-

cluded in the plan, then it should provide support of amount req(Tr) to other transitions on

the resource.

inplan(Tr)⇒ ∑
<T′r ,Tr>∈SUP(r)

support(Tr, T′r) = req(Tr) (3.14)

For each transition Tr on a resource r, except for the dummy start and end transition, if Tr is

included in the plan, then the above two constraints imply the following support conservation

rule:

∑
<T′r ,Tr>∈SUP(r)

support(T′r , Tr) = req(Tr) = ∑
<Tr ,T′′r >∈SUP(r)

support(Tr, T′′r )

Similar to the state variable transitions, if a resource transition Tr is excluded from the plan,

then it can’t support any other transitions and no transition can support its requirements.

Constraint 15. For each resource transition Tr on a resource r, if Tr is exuded from the plan

then the total support from other transitions to Tr and the total support from Tr to other tran-

sitions must be 0.

¬ inplan(Tr)⇔ ∑
<T′r ,Tr>∈SUP(r)

support(T′r , Tr) = 0 = ∑
<Tr ,T′′r >∈SUP(r)

support(Tr, T′′r )

(3.15)

3.4.3.7 Transition Ordering Constraints

For each pair of transitions T and T′ we define a precedence constraint, T → T′, to specify that

T′ is ordered after T, meaning T′ starts after T finishes its execution. This ordering relation is

only valid between transitions that execute on same state variable or resource, and is implied

by assignments of achieve, follow, and support variables.
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Constraint 16. Assignment of each achieve and follow variable to the value 1 implies the

following precedence constraint between the transitions.

∀ < Tsv, T′sv >∈ AC(sv) : achieve(Tsv, T′sv) = 1⇒ Tsv → T′sv (3.16)

∀ < TP
sv, TE

sv >∈ FL(sv) : follow(TP
sv, TE

sv) = 1⇒ TP
sv → TE

sv (3.17)

Constraint 17. Assignment of each support variable to any value greater than 0 implies the

following precedence constraint between the transitions.

∀ < Tr, T′r >∈ SUP(r) : support(Tr, T′r) > 0⇒ Tr → T′r (3.18)

Constraint 18. For each pair of transitions T and T′ such that T → T′ holds, the start time

of T′ must be greater or equal to the end time of T.

T → T′ ⇒ start(T′) ≥ end(T) (3.19)

As we have stated before, each precedence constraint between a pair of transitions is also a

constraint on the distance between the start times of their corresponding actions. Here we will

show how Constraint 18 constrains the distance between the corresponding action start times.

Note that Constraint 1 specifies that the transitions are non-preemptive, meaning:

end(T) = start(T) + dur(T) (3.20)

The start time of each transition is synchronized with the start time of its action (Constraint 2),

i.e.

start(T) = offset(T) + start(act(T)) (3.21)

Substituting start(T) in equation 3.20, from equation 3.21 we get the following equation for

the end time of T.

end(T) = offset(T) + start(act(T)) + dur(T) (3.22)

From Constraint 18, we know that T → T′ means that start(T′) ≥ end(T). Using equation
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3.21, and equation 3.20 we can rewrite Constraint 18, as follows:

T → T′ ⇒ start(T′) ≥ end(T)

⇒ offset(T′) + start(act(T′)) ≥ offset(T) + start(act(T)) + dur(T)

⇒ start(act(T′))− start(act(T)) ≥ offset(T) + dur(T)− offset(T′)

(3.23)

This means that each precedence constraint between a pair of transitions on same state variable

or resource puts a constraint on the distance between their corresponding actions.

3.4.3.8 DUMMY Action Constraints

We have two dummy actions: Start and End, that mark the beginning and end of a plan

respectively. Recall that for each resource r, goal(r) = [minr, maxr]. For each reservoir

resource r ∈ Rreserve, there are four dummy actions:StartProducer, that has a PRODUCE

transition which produces init(r) amount of resource, and StartConsumer, that has a CON-

SUME transition which creates capacity(r) − init(r) amount of free-space, EndProducer

that has a PRODUCE transition which produces capacity(r)−maxr amount of resource, and

EndConsumer that has a CONSUME transition which consumes minr amount of resource.

All dummy actions are constrained to be always in the plan.

Constraint 19. All dummy actions must be included in the plan.

∀a ∈ {DUMMYactions} : inplan(a) = true (3.24)

Recall that the Start and End actions are constrained to appear before and after all other

actions in the plan, respectively. This means that the minimum distance between Start and all

other actions must be 0, and the minimum distance between all actions to End must be 0.

Constraint 20. For all actions a and a′ such that a 6= Start and a′ 6= End:

start(a)− start(Start) ≥ 0 and start(End)− start(a′) ≥ 0 (3.25)

For each reservoir resource the dummy start production and consumption transitions can

only be supported by the dummy start transition of the resource.

Constraint 21. For each reservoir resource r ∈ Rreserve, the dummy start production and

consumption transitions are supported only by the dummy start transition of r.

support(Tstart
r , TStartCosnume

r ) = req(TStartConsume
r )

support(Tstart
r , TStartProduce

r ) = req(TStartProduce
r ) (3.26)
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Note that the way we model the dummy start transitions on reservoir resources, the follow-

ing is always true on each reservoir resource r.

req(TStartConsume
r ) + req(TStartProduce

r ) = capacity(r) = req(Tstart
r )

Similarly, the dummy end production and consumption transitions on a reservoir resource

can only provide support to the dummy end transition of the resource.

Constraint 22. For each reservoir resource r ∈ Rg
reserve, the dummy end production and

consumption transitions must provide support only to the dummy end transition of r.

support(TEndConsume
r , Tend

r ) = req(TEndConsume
r )

support(TEndProduce
r , Tend

r ) = req(TEndProduce
r ) (3.27)

Due to our modeling of the dummy end transitions on reservoir resources, the following is

always true for each reservoir resource r.

req(TEndConsume
r ) + req(TEndProduce

r ) ≤ req(Tend
r ) = capacity(r)

3.5 Solution To the Constraint Model

A solution to the transition-based constraint model assigns values to the inplan, achieve,

follow and support variables such that all constraints are satisfied. The assignments of

inplan variables indicate which actions and transitions are included in the plan, and assign-

ments of the achieve and follow indicates how pre-conditions of the state variable transitions

are supported, and assignments of the support variables represent how resource requirements

of the resource transitions are fulfilled. Each assignment of achieve, follow and support
variables implies a precedence ordering between transitions. Each precedence constraint be-

tween a pair of transitions implies a distance constraint between the corresponding actions

of the transitions. Given a solution of the transition-based constraint model of the planning

problem, we can extract a flexible plan from the solution by selecting the included actions

(excluding the dummy actions) and their start times. Recall that we call a flexible plan a so-

lution to the planning problem, if and only if all possible realizations of the flexible plan are

valid. Each valid realization creates a valid schedule on each state variable and resource. In

other words, each flexible plan that is a solution to the planning problem, creates a set of valid

schedules on each domain object.

In this section we show that the flexible plan extracted from the solution to the transition-

based constraint formulation of a planning problem is indeed a solution to the planning prob-

lem. We first show that on each state variable and resource, the solution to the transition-based
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constraint formulation creates a partially ordered set of transitions that must execute on the

state variable and resource. Then we show that each possible execution of this partially or-

dered set of transition creates a valid schedule on the corresponding domain object. Lastly we

show that each realization of the flexible plan extracted from the solution, creates an execution

of the partially ordered set of transitions on each domain object that creates a valid schedule

on the domain object. That is, we show that all realizations of the extracted flexible plan are

valid, thus the flexible plan is a solution to the planning problem.

On each domain object, the solution to the transition-based constraint model creates a

partially ordered set of active transitions on the domain object. We call this partially ordered

set a Partial Order Schedule (POS) on the domain object. Note that solution of the constraint

model doesn’t assign the start time of transitions. We define an execution of a POS, as follows:

Definition 14. Execution of POS
An execution of a POS assigns values to the start times of the transitions (excluding the dummy

transitions) such that the following two constraints are satisfied:

1. for each transition T, end(T) = start(T) + dur(T)

2. for each pair of transition T and T′ where the precedence constraint T → T′ exists in

the POS: end(T) ≤ start(T′)

Since execution of a POS refers to actual execution of transitions, we exclude the dummy

transitions. We will show below that each execution of a partial order schedule represents a

valid schedule on the corresponding domain object.

3.5.1 Partial Order Schedule On State Variables

Given a solution to the transition-based constraint formulation, for each state variable sv we

create a partial order schedule, POS(sv), which is a directed graph, as follows:

• For each achieve-relevant transition pair Tsv and T′sv, if achieve(Tsv, T′sv) = 1, then

add Tsv and T′sv as nodes in POS(sv), and add a directed edge from Tsv to T′sv.

• For each can-follow transition pair Tsv and T′sv, if follow(Tsv, T′sv) = 1, then add Tsv

and T′sv as nodes in POS(sv), and add a directed edge from Tsv to T′sv.

We only add a node for a transition in POS(sv) above if it doesn’t exist before. Note that

each edge represents a precedence constraint between transitions. Given a state variable sv,

the POS(sv) created by the solution has the following properties:

1. For each transition Tsv on the state variable sv, where inplan(Tsv) = true, there exists

a corresponding node for Tsv in POS(sv). This is the case because we add an achieve-

relevant pair of transitions < Tsv, T′sv > as nodes if achieve(Tsv, T′sv) = 1.
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This means that we need to show that if achieve(Tsv, T′sv) = 1, then

inplan(Tsv) = inplan(T′sv) = true

If achieve(Tsv, T′sv) = 1, then Constraint 6 ensures that inplan(T′sv) = true. Note

that T′sv can be either an EFFECT transition or a PREVAIL transition.

If T′sv is an EFFECT transition, then Constraint 7 ensures that inplan(Tsv) = true.

If T′sv is a PREVAIL transition, then Constraint 8 makes sure that there exists an EF-

FECT transition T′′sv such that follow(T′sv, T′′sv) = 1,. Since achieve(Tsv, T′sv) = 1
and follow(T′sv, T′′sv) = 1, and T′sv is a PREVAIL transition, Constraint 9 derives that

achieve(Tsv, T′′sv) = 1. Since Tsv and T′′sv both are EFFECT transition, it implies that

T′′sv is included in the plan (Constraint 6), and Tsv is included in the plan (Constraint 7),

i.e. inplan(Tsv) = true.

In addition to this, Constraint 19, includes the dummy actions in the plan, and Constraint

5 ensures that all dummy start and end transitions are included in the plan.

2. The dummy start transition on sv, Tstart
sv , has no incoming edge. This is due to the

fact that each pair < Tsv, Tstart
sv > is not achieve-relevant. Similarly, since each pair

< Tend
sv , Tsv > is not achieve-relevant, the dummy end transition Tend

sv has no outgoing

edge.

3. All EFFECT transitions in POS(sv), except for the dummy start transition Tstart
sv , have

exactly one incoming edge from one other EFFECT transition in POS(sv) that achieves

its pre-condition. This is the case because for each EFFECT transition Tsv that is in-

cluded in POS(sv), Constraint 6 implies that there exists an EFFECT transition that

achieves its pre-condition. Similarly, all EFFECT transitions, except for the dummy

end transition Tend
sv , have exactly one outgoing edge to another EFFECT transition in

POS(sv), due to Constraint 7. Since each action and its transitions can occur at most

once, Constraint 6 and Constraint 7 together imply that in POS(sv) all EFFECT transi-

tions are sequenced, and since no transition occur more than once this also implies that

the sequence is acyclic.

4. Each PREVAIL transition in POS(sv) appears between two consecutive EFFECT tran-

sitions in POS(sv). This means that each PREVAIL transition has exactly one incoming

edge from an EFFECT transition Tsv and exactly one out going edge to another EFFECT

transition T′sv, where Tsv 6= T′sv, and there exists an edge from Tsv to T′sv. This is due

to the fact that each transition in POS(sv) must have their pre-condition satisfied (Con-

straint 6) and if the EFFECT transition Tsv achieves the pre-condition of the PREVAIL
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Figure 3.5: Example of POS for a state variable

transition TP
sv, and the EFFECT transition T′sv follows TP

sv, then Constraint 9 ensures that

Tsv must achieve the pre-condition of the EFFECT transition T′sv.

For each state variable sv, POS(sv) represents a set of ordering relations between the active

transitions on the state variable sv, such that the EFFECT transitions are sequenced, where

Tstart
sv appears in the first position and Tend

sv is at the last position, and each PREVAIL transition

appears in between two EFFECT transitions, i.e. is ordered with the EFFECT transitions that

appear immediate before and after it. Figure 3.5 describes an example of such POS(sv),
where Start and End represents the dummy start and end transitions on sv, T1, T2, T3, and T6

are EFFECT transitions and T4 and T5 are PREVAIL transitions that appear in between two

EFFECT transitions T3 and T6.

For each state variable sv, the POS(sv) created by the solution to the constraint model,

each execution of the POS(sv) achieves the conditions of a valid schedule on a state variable,

as described in Definition 5 in the previous chapter (page 33). This is because each execution

of POS(sv)

• Ensures the correct evolution of the state variable sv, because all EFFECT transitions

are sequenced.

• Achieves the pre-conditions of all EFFECT transitions, and satisfies the overall condi-

tions of the PREVAIL transitions. Each included PREVAIL transition appears in be-

tween two EFFECT transitions, meaning that the PREVAIL transition starts execution
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after the EFFECT transition that achieves its required state and finishes before the EF-

FECT transition that changes the state to another.

• Starts the evolution of the state variable sv from the initial state init(sv). The first

transition in POS(sv) is Tstart
sv that achieves the initial state. The EFFECT transition Tsv

that executes immediately after Tstart
sv must have pre(Tsv) = post(Tstart

sv ) = init(sv).
That means every execution of POS(sv) starts from the state init(sv).

• Achieves the goal state goal(sv), if sv is a goal state variable. In POS(sv) the last tran-

sition is Tend
sv . Since all transitions’ pre-conditions are satisfied, the second to last EF-

FECT transition Tsv in the sequence, must have post(Tsv) = pre(Tend
sv ) = goal(sv).

This means that each execution of POS(sv), where sv is a goal state variable, ends with

the state goal(sv).

This means that each execution of POS(sv) represents a valid schedule on the state variable

sv. In other words each POS(sv) represents a set of valid schedules on sv.

3.5.2 Partial Order Schedule On Resources

Given a solution, for each resource r we create a POS(r) which is a directed weighted graph,

as follows:

• For each support-relevant transition pair Tr and T′r on the resource r, if support(Tr, T′r) >
0, then we add Tr and T′r as nodes in POS(r) and add a directed edge from Tr to T′r that

has the weight support(Tr, T′r).

We only add a transition as a node in POS(r), if it doesn’t exist before. Note that each edge

represents a precedence relation between the transitions. For each resource r, the POS(r) has

the following properties:

1. All active transitions Tr, i.e. inplan(Tr) = true, are included as a node in POS(r).
This is the case because, for each transition Tr on the resource r, if inplan(Tr) = f alse
then Constraint 15 ensures that for each support relevant pair, either < Tr, T′r > or

< T′r , Tr >, support(Tr, T′r) = 0 or support(T′r , Tr) = 0. We only add pair of

transitions < Tr, T′r > where support(Tr, T′r) > 0. This means that all the transitions

we add in POS(r) are active transitions.

2. The node representing the dummy start transition Tstart
r has no incoming edge (or sup-

port). This is due the fact that each pair < Tr, Tstart
r > is not support-relevant. Similarly,

the node representing the dummy end transition Tend
r has no outgoing edge because each

pair < Tend
r , Tr > is not support-relevant.
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Figure 3.6: Example of POS(r) for resource r

3. For each Tr included in the POS(r), where Tr 6= Tstart
r , the total weight of the incoming

edges is equal to the req(Tr). Since all transitions included in the POS(r) are active

transitions, Constraint 13 ensures that each active transitions requirements are satisfied.

Similarly, for each transition Tr in POS(r), where Tr 6= Tend
r , the total weight of the

outgoing edges is equal to the req(Tr), due to Constraint 14.

Given the above properties, its easy to see that each POS(r) represents a Flow Network, where

Tstart
r represents the source node and Tend

r is the sink node, and all other transitions in POS(r)
represent the internal nodes. For each transition in the flow network, the corresponding req(Tr)

represents the capacity of the node, and each edge weight represents the flow from one node to

other. Each internal node has the flow conservation property, i.e. total inflow is equal to total

outflow. Note that each POS(r) is a special sort of flow network where total in and out flow is

equal to the capacity of each internal node. The flow of the network is the sum of all out-going

flow from the source node, i.e. from Tstart
sv in this case. Note that total out-going flow from

each node is equal to req(Tr) where the node represents the transition Tr, and we know that

req(Tstart
r ) = capacity(r). This means that each POS(r) represents a flow network which

has the flow equal to capacity(r).
Figure 3.6 describes a POS(r) for a resource r, where start and end represent the dummy

start transition Tstart
r and dummy end transition Tend

r on r respectively. For example, the tran-

sition T4 in the Figure 3.6, has req(T4) = 5, and there are 3 incoming edges from T1, T2, and

Tstart
r , with total weight of 5. Similarly, T4 has two outgoing edges to T5 and T6 with total

weight of 5 as well.
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On each resource r the partial order schedule, POS(r), that represents a flow network that

has a flow equal to capacity(r), has the following property.

• For any given transition set k ⊂ POS(r) of transitions, such that there are no edges

between the corresponding nodes in POS(r), the total requirement of the set k is always

less than or equal to capacity(r).

For example, consider the set {T1, T2}, where T1 and T2 have no precedence constraint be-

tween them, and total requirement of them req(T1) + req(T2), 2+2=4, which is less than 6

which is the capacity of r. The other independent set {T5, T6}, has the total requirement of 6.

For each resource r, each edge in the POS(r) represents a precedence constraint between

a pair of transitions. Each precedence constraint implies a temporal constraint that prevents

the transition pair to overlap during execution, but if a pair of transition has no precedence

constraint, then the transitions in the pair can overlap during their execution. The above prop-

erty ensures that each set of transitions in the POS(r), where transitions in the set can pair-

wise overlap, can execute in parallel without over-consuming, -producing or -borrowing the

resource.

For each resource r, each execution of the POS(r) represents a valid schedule as described

in Definition 8 in the previous chapter (page 36). This is because each execution:

• Creates an evolution of the resource r, where at each time point t ∈ [0, H], level(r, t) ∈
[0, capacity(r)].

• Satisfies the requirement of reservation of free-space for each transition. Each CON-

SUME transition reserves the free-space it creates and release the free-space at the end.

Each PRODUCE transition is supported by CONSUME transitions. This means that

CONSUME transitions provide unreserved free-space to PRODUCE transition to re-

serve. If a transition’s requirement is fulfilled, then it has enough free-space to reserve.

Since each execution creates an evolution of r, and all transitions requirements are ful-

filled, the total amount of reservations of free-space will be always less than or equal to

the amount of free-space available.

• Creates an evolution of r, such that that it respects the initial condition of the resource

r, i.e. at time point 0, level(r) ≤ init(r). In the case of reusable resources, since each

POS(r) starts with Tstart
r , this means that at 0 req(Tstart

r ) = capacity(r) amount of

resource is available for use. Since each BORROW transition consumes at the start, and

each transition have non-zero positive duration, condition level(r) ≤ init(r) holds.

In case of reservoir resources, Tstart
r immediately followed by dummy transitions TStartConsume

r

and TStartProduce
r which simulates production of initial level of resource, and creation of

initial free-space respectively. All CONSUME transitions can only starts after TStartProduce
r
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because, in each reservoir resource, Tstart
r does not support any transitions other than the

dummy start consume and produce transitions. This means that on each reservoir re-

source, each execution of POS(r) satisfies the initial condition.

• Achieves the goal condition, i.e. at time point H, level(r, H) ∈ goal(r). Note that

goal condition on each resource r is an interval goal(r) = [minr, maxr]. In the case

of reusable resources, the last transition in POS(r) is Tend
r . Since each transition’s pre-

condition is satisfied in POS(r), there must be a set of BORROW transitions B, such

that the following condition must hold:

∑
T∈B

support(T, Tend
r ) = req(Tend

r ) = capacity(r)

Note that for each reusable resource r, goal(r) = [capacity(r), capacity(r)], and

there are no other transitions that execute in between the set B and Tend
r , i.e. transition in

B are the last transitions to execute on r in each execution of POS(r). This means that

each execution of POS(r), where r is a reusable resource, satisfies the goal condition.

In the case of a reservoir resource r, the last transition in POS(r), Tend
r , is imme-

diately preceded by the dummy transitions TEndProduce
r and TEndConsume

r . Recall that

req(TEndConsume
r ) = minr and req(TEndProduce

r ) = capacity(r)− maxr. In POS(r)
there is a set of CONSUME transitions C, that provides supports to the CONSUME tran-

sition TEndConsume
r , and a set of PRODUCE transitions P, that provides support to the

PRODUCE transition TEndProduce
r . This means that the set P produces minr amount of

resource and the set C produces capacity(r)−maxr amount of free-space. Note that for

each execution of POS(r), transitions in C and P are among the last transitions that exe-

cute on r. There can be other PRODUCE and CONSUME transitions additional to these

sets of transition executing last on r. Note that by executing last, the transitions in C,

that produces capacity(r)− maxr amount free-space, ensures that maximum amount

of resource available in r at H is maxr. Similarly, the transition set P ensures that at H
amount of resource available in r is at least minr. This means that, each execution of

POS(r), where r is a reservoir resource, achieves the goal condition.

This means that, similar to the POS of state variables, each realization of POS(r) represents

a valid schedule on the resource r. In other words, for each resource r, POS(r) represents a

set of valid schedules on r.

3.5.3 Solution Extraction

As described in the previous chapter, a plan for a planning problem P , is defined as a triplet:

FlexiPlan(P) =< ActIns, StartTimeIntv, DistCons >
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where ActIns is a set of action instances where for each a ∈ ActIns : inplan(a) = true,

StartTimeIntv is the set of start times, i.e. ∀a ∈ ActIns : start(a) ∈ StartTimeIntv, and

DistCons is a set of start time differences where ∀a, a′ ∈ ActIns, a 6= a′ : dist(a, a′) ∈
DistCons. We can extract a flexible plan from the solution as the following:

• Select each action a such that inplan(a) = true and a is not a dummy action, put it in

ActIns.

• Select each action a such that inplan(a) = true and a is not a dummy action, put

[lb(start(a)), ub(start(a))] in StartTimeIntv

• Create a set of distance constraints, dist(a, a′), where

dist(a, a′) = start(a′)− start(a)

for each pair of actions a and a′, such that inplan(a) = true and inplan(a′) = true,

and put them in DistCons. Note that start(a) and start(a′) are intervals and may not

be fully assigned in a solution, but instead constraint on them are represented as STN.

Given a FlexiPlan(P), extracted from the solution to the transition-based constraint model,

as described above, note the following two points:

1. Due to Constraint 5, if an action a is included in the plan, then all its transitions T ∈
trans(a) are also included in the plan. Note that each partial order schedule on domain

objects includes all active transitions on that domain object. This means that for each

action included in ActIns, each of its transitions are part of the partial order schedule

on the corresponding domain object, and for all transitions (except for the dummy tran-

sitions) that are included in the partial order schedules, their corresponding actions are

included in the ActIns.

2. Each precedence constraint between a pair of transitions in the partial order schedules

implies a temporal constraint between start and end times of the transition pair, which

implies a distance constraint between their corresponding action start times. When an

action’s start time gets updated because of precedence constraints posted on one domain

object, then via Constraint 2 that change gets propagated to transitions on other domain

objects.

What follows from the above two points is that the distance constraints (DistCons) of the

FlexiPlan(P) among the actions are the results of precedence constraints posted on the partial

order schedules on domain objects.
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3.5.3.1 Solution to Planning Problem

Each realization R of the FlexiPlan(P), where we fix the start time of each action instances

(that implies the fixed start and end times for transitions) such that each distance constraint

in DistCons is satisfied, creates an execution for each partial order schedule on each domain

object. For each domain object, each execution of the partial order schedule represents a valid

schedule on the domain object. This means that all realizations of the flexible plan are valid

realizations. That means the flexible plan extracted from the solution of the transition-based

constraint model of the planning problem is a solution to the planning problem.

3.6 Summary

In this chapter we have described how a planning problem described in transition-based rep-

resentation can be complied into a CSP by bounding the number of action instances. We have

shown that the solution of the CSP corresponds to a flexible solution to the planning problem.

The key assumption we have made for compilation is to bound the number of action instances

in a plan. In many practical planning and scheduling problems, for most of the actions we can

find a small, fixed number of their occurrence. There are usually only a few action(s) that a

modeler has to guess the number of occurrences of. This key parameter plays an important role

in the size of complied CSP, which in turn can affect the solving time of the planning problem

(see Section 6.5 for experimental results). One possible way to overcome this restriction is to

add a new copy of an action when the action is included in the plan. In the rest of the thesis we

assume that each action can occur at most once.

In the next chapter we describe the solving techniques for the CSP generated in this chapter.



Chapter 4

Solving: Branching, Propagation and
Inference Techniques

A constraint satisfaction problem is solved by making decisions on constraint variables, where

a decision is an assignment of a value to a variable from its domain. This process of making

decisions, also called search, stops when there are no more decision to make. We call a con-

straint problem solved when there are no more decisions to make and none of the constraints

are violated. The set of decisions is called a solution to the problem. There are mainly two

ways to search for a solution for a constraint problem: systematic search, and local search. In

systematic search, at each search step we assign a decision variable a possible value. If the

assignment fails, meaning it violates some constraint, search backtracks to the previous step

and try other possible values of the variable. In local search, usually we search for a solution

by assigning all decision variables at once, and checking if this satisfies all constraints. If it

violates any constraint, local search tries to fix the set of assignments, by reassigning a sub-

set of variables to new values, and checking for violation of constraints again. Once it finds

a set of assignment that satisfies all constraints it returns the set as the solution. One major

difference between systematic search and local search is that the first one can be complete, and

latter one is not. By complete we mean that systematic search will find a solution if there exists

one, otherwise it can detect if there are no solution for the problem. Local search can’t prove

unsatisfiability. But, in practice, for large scale industrial problems, local search is the first

choice because in general it can find a solution faster than systematic search.

The search space of a problem is defined as the all possible variable value assignments.

Given a search space of a problem, only certain parts of the search space contain solutions

to the problem. The time to find a solution via systematic search is proportional to the size

of the search space. The bigger the search space, the more time it takes to find a solution (if

one exists). One way to improve the efficiency of search1 is to remove parts of the search

space where no solution exists. Propagation of constraints means pruning the search space

by removing values from the domains of constraint variables, based on the property of given

1From now on we will refer to systematic search by search.
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constraints. Generally, given a constraint problem, propagation of constraints is performed at

each search step. Because it is invoked at each step in the search space it is usually the case

that we need to compromise on how much search space it can prune and how expensive it is.

A propagator is called consistent if it doesn’t prune any value from variables domains that is

part of a solution. In other words, a consistent propagator doesn’t prune any solution from

the search space. Also, a propagation method is called complete if it can remove all incon-

sistent value from variable domains. The effect of employing complete propagation methods

at each search step is that the search can find a solution without failing (that is backtrack free

way). But devising complete propagation technique is non-trivial and expensive in terms of

run time. Usually, in constraint-based search, cheap (low-order polynomial time) incomplete

propagation techniques are employed during search.

In this chapter we describe propagation techniques for the constraint model described in

the previous section. Before that we will discuss our basic branching scheme, that will describe

how we make a decision at each search step.

4.1 Branching Scheme

A branching scheme describes how we make decisions at each search step. Note that we

want to generate a flexible plan, meaning start times of action instances are intervals, not

fixed. Recall that our constraint model has start, end and inplan variable for each action and

transition, achieve variables for each achieve-relevant pair of state variable transitions and

follow variables for each can-follow pair of transitions on each state variable, and support
variables for each support-relevant pair of resource transitions on each resource. Since we

don’t want to make decision on the start and end times of actions and transitions, we exclude

them from being decision variables. Also, due to the action activation constraints we can

see that decisions on achieve and support determines the values of inplan variables (for

both actions and transitions). For this reason we branch on three decision variables: achieve,

follow and support.

At each CSP search step we pick a decision variable and assign a value from its domain,

then propagate the effect of assignment. If the propagation fails, i.e. if the assignment leads to

an inconsistent state of CSP, we backtrack and prune that value from the domain of the variable.

This means that at search step, first we select a decision variable (variable selection) and then

select a value from its domain (value selection). Performance of any CSP search technique

depends a lot on its variable and value selection procedure. To solve different problems, it may

be necessary to employ different variable value selection techniques to solve the problems

efficiently. Creating a general variable value selection heuristic that would work sufficiently

well on variety of problems is a hard problem and is an active research area in the automated

planning and scheduling community. This topic will not be addressed in this thesis. In this
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chapter we discuss how we propagate constraints and infer information after each branching

decision. We assume that at each search step, either a achieve or a follow or a support
variable is given, and below we describe how we branch on the given variable.

• For each achieve(T, T′) variable first we assign achieve(T, T′) = 1, i.e. T achieves

precondition of T′. If this decision leads to a failure, then we prune the value 1 from the

domain of achieve(T, T′). Since each achieve(T, T′) has a binary domain {0, 1}, this

means that we assign achieve(T, T′) = 0, i.e. T does not achieve precondition of T′.

• For follow variables we do exactly same as for achieve variables.

• The domain of each support(T, T′) variable is an interval [0, ub], where ub is maxi-

mum possible support that T can provide to T′. For each support(T, T′) variable first

we assign support(T, T′) = ub, i.e. T provides maximum possible support to T′. If

this assignment leads to a failure, then we prune ub from the domain by putting the con-

straint, support(T, T′) < ub. This means that support(T, T′) will have a new upper

bound, support(T, T′) = {0, ub− 1}.

Each decision achieve(T, T′) = 1, follow(T, T′) = 1, and support(T, T′) = ub, where

ub > 0, have the following implications:

• Each transition in the pair < T, T′ >, is included in the plan, inplan(T) = inplan(T′) =
true

• Implies a precedence constraint between the pair of transitions < T, T′ >, T → T′

These implications can trigger other constraints. In the next section we describe how con-

straints are propagated. After each decision, there is constraint propagation phase. If the

constraint propagation is successful, then we move to next search step, if it returns failure, then

we backtrack to the previous step.

4.2 Constraint Propagation

This section describes the propagation rules that implements the constraints described in the

previous chapter. All these propagation rules collectively ensure the correctness of the con-

straint model. The main aim of these propagation rules are to maintain consistency of the

constraint model by pruning inconsistent domain values. These propagation rules are executed

repeatedly after each decision is made via branching until a fixed point is reached. For each

propagation rule, we will use a procedural notation: lhs ⇒ rhs to represent that if the condi-

tion on the left hand side of⇒ holds (lhs), then apply the right hand side (rhs). The right hand
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side of ⇒ always be either an assignment of a variable-value (set:) or posting a constraint

(post:).

We maintain an additional variable during the search for each pair of actions < a, b >,

dist(a, b) that maintains the difference between the start times of the actions, i.e.

dist(a, b) = start(a)− start(b) (4.1)

dist(a, b) gets updated when either start(a) or start(b) gets updated during the propagation.

4.2.1 Failure of Propagation

The propagation returns failure, indicating an inconsistent CSP search state, only when prop-

agation try to assign inconsistent value to inplan variables of actions. This means that if for

an action a, inplan(a) = true and propagation tries to assign set: inplan(a) = f alse or vice

versa, then the propagation phase returns failure.

4.2.2 Inconsistent Temporal Interval Propagation

For each constraint variable Var, let lb(Var) and ub(Var) represent the lowest and highest

possible value in dom(Var) respectively. Note that an interval variable var is consistent if

lb(var) ≤ ub(var) holds. The transition-based constraint formulation of planning problems

has 4 main temporal interval variables: start of each action, start(a), start and end of each

transition, start(T) and end(T), and the distance between each pair of actions, dist(a, b).
For any action a and for any transition T, if start(a), or start(T), or end(T) becomes

inconsistent then the corresponding action or transition must be excluded from the plan.

Propagation Rule 1. For each action and transition, inconsistent start or end time implies

that the action or the transition must be excluded from the plan.

lb(start(a)) > ub(start(a))⇒ set : inplan(a) = f alse (4.2)

lb(start(T)) > ub(start(T))⇒ set : inplan(T) = f alse (4.3)

lb(end(T)) > ub(end(T))⇒ set : inplan(T) = f alse (4.4)

Recall that dist(a, b) represents the distance from the start of action a to the start of action

b. If dist(a, b) becomes inconsistent, then either a or b, or both a and b, must be excluded

from the plan.

Propagation Rule 2. For each action pair < a, b >∈ A such that a 6= b:

lb(dist(a, b)) > ub(dist(a, b))⇒ post : ¬ inplan(a) ∨ ¬ inplan(b) (4.5)
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For each action we say that the action is included in the plan if inplan(a) = true, and

excluded from the plan, if inplan(a) = f alse. If dom(inplan(a)) = {true, f alse}, then we

say that action a is undecided. When we say that action a is not excluded, we mean that either

a is included or a is undecided. Similar terminology applies to the status of transitions.

If an action a is included in the plan, then all other actions that have a disjunctive constraint

posted by Prop Rule 2 must be excluded from the plan.

Propagation Rule 3. For each action a, if a is included in the plan, then each action b such

that ¬ inplan(a) ∨ ¬ inplan(b), is excluded from the plan.

inplan(a) = true⇒∀b : s.t.¬ inplan(a) ∨ ¬ inplan(b) holds

set : inplan(b) = f alse (4.6)

4.2.3 Propagation of Activation Constraint

The Action Activation Constraint (Constraint 5) implies that if an action is included in (or

excluded from) the plan, then its transitions are included in (or excluded from) the plan, and

similarly if a transition is included in (or excluded from) the plan then its corresponding action

must be included in (or excluded from) the plan.

Propagation Rule 4. For each action a, for each transition T, where T ∈ trans(a):

inplan(a) = true⇒ set : inplan(T) = true (4.7)

inplan(a) = f alse⇒ set : inplan(T) = f alse (4.8)

inplan(T) = true⇒ set : inplan(a) = true (4.9)

inplan(T) = f alse⇒ set : inplan(a) = f alse (4.10)

4.2.4 Propagation of Resource Support Relations

For each support-relevant pair < Tr, T′r > on a resource r, the domain of the corresponding

support variable support(Tr, T′r)) is an interval [0, δTr ,T′r ], where δTr ,T′r denotes the maxi-

mum support amount that Tr can provides to T′r . We say the support(Tr, T′r) is undecided if

lb(support(Tr, T′r)) = 0 and ub(support(Tr, T′r)) > 0. This means Tr has not yet commit-

ted any support to T′r . When

ub(support(Tr, T′r)) = lb(support(Tr, T′r)) = δ,

if δ > 0, then we say that support(Tr, T′r) is assigned. If δ = 0, then we say that support(Tr, T′r)
is excluded from the plan to mean that Tr doesn’t provide any support to T′r .
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If a resource transition Tr supports some amount of resource to T′r , i.e. if support(Tr, T′r)
is assigned, then from Constraint 13 and 14 we can deduce that both Tr and T′r are included in

the plan.

Propagation Rule 5. For each resource r ∈ Rresuse ∪ Rreserve, for each support-relevant pair

< Tr, T′r >∈ SUP(r):

support(Tr, T′r) is assigned⇒ set : inplan(Tr) = inplan(T′r) = true (4.11)

When a resource transition is included in the plan, Constraint 13 ensures that its require-

ment is supported. We define remaining demand of a transition Tr, that states how much sup-

port is still needed to fulfill its total requirement considering the amount of support it already

has from other supporting transitions.

Definition 15. Remaining Demand: For a resource transition Tr, remaining demand, denoted

as RemDemand(Tr), is the amount of resource that Tr still needs to be supported.

RemDemand(Tr) = req(Tr)− ∑
<T′r ,Tr>∈SUP(r)

lb(support(T′r , Tr)) (4.12)

For a resource transition Tr, if RemDemand(Tr) = 0, then we say that Tr is fully sup-

ported. For each transition Tr, the maximum amount of support it can get from each transition

on the resource that not yet committed any support to Tr, is the amount of its remaining de-

mand.

Propagation Rule 6. On each resource r, for each support-relevant pair < T′r , Tr >∈ SUP(r),
such that T′r not yet provides any support to Tr, the maximum support T′r can provide to Tr is

RemDemand(Tr).

support(T′r , Tr) is undecided⇒ set : support(T′r , Tr) ≤ RemDemand(Tr) (4.13)

Constraint 14 ensures that if a transition is included in in the plan, then it provides support

to other resource transitions on the same resource. We define remaining support of a transition

Tr that states how much resource it can still provide to other transitions, given its current

supporting commitments.

Definition 16. Remaining Support: For a resource transition Tr, remaining support, denoted

as RemSupport(Tr), is the amount of resource that Tr still can provide to other transitions.

RemSupport(Tr) = req(Tr)− ∑
<Tr ,T′r>∈SUP(r)

lb(support(Tr, T′r)) (4.14)
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For a transition Tr, if RemSupport(T) = 0, then we say that Tr is totally supporting.

For each transition Tr the maximum amount of support it can provide to other transitions that

are not yet supported by Tr, is the RemSupport(T).

Propagation Rule 7. For each resource r, for each support-relevant pair < Tr, T′r >∈
SUP(r), such that T′r is not yet supported by Tr, the maximum support T′r can get from Tr

is RemSupport(Tr).

support(Tr, T′r) is undecided⇒ set : support(Tr, T′r) ≤ RemSupport(Tr) (4.15)

4.2.5 Propagation of State Variable Relations

Each state variable transition’s pre-condition can be achieved by only one EFFECT tran-

sition. On a state variable sv,for each achieve-relevant pair < Tsv, T′sv >∈ AC(sv), if

achieve(Tsv, T′sv) = 1, then it means Tsv achieves the pre-condition of T′sv and we say that

achieve(Tsv, T′sv) = 1 is decided. If achieve(Tsv, T′sv) = 0, then we say that achieve(Tsv, T′sv)

is excluded from the plan. We say achieve(Tsv, T′sv) is undecided if it is neither decided nor

excluded.

If a state variable transition achieves the pre-condition of another transition, then Constraint

6 ensures that both transitions should be included in the plan.

Propagation Rule 8. For each state variable sv, for each achieve-relevant pair < Tsv, T′sv >∈
AC(sv), if Tsv achieves the pre-condition of T′sv, then both Tsv and T′sv are included in the plan.

achieve(Tsv, T′sv) = 1⇒ set : inplan(Tsv) = inplan(T′sv) = true (4.16)

When Tsv achieves the pre-condition of T′sv, no other transition can achieve T′sv’s pre-

condition (Constraint 6).

Propagation Rule 9. For each state variable sv, for each achieve-relevant pair < Tsv, T′sv >∈
AC(sv), when Tsv achieves the pre-condition of T′sv, no other transition T′′sv, such that <

T′′sv, T′sv >∈ AC(sv), can achieve its pre-condition.

achieve(Tsv, T′sv) = 1 ⇒ ∀T′′sv : Tsv 6= T′′sv and < T′′sv, T′sv >∈ AC(sv)

set : achieve(T′′sv, T′sv) = 0 (4.17)

Note that for each achieve-relevant pair < Tsv, T′sv >, Tsv is always an EFFECT transition,

and T′sv is either an EFFECT or a PREVAIL transition. Each EFFECT transition can only

achieve pre-condition of one EFFECT transition (Constraint 7).

Propagation Rule 10. For each state variable sv, for each achieve-relevant pair < Tsv, TE
sv >∈

AC(sv), where TE
sv is an EFFECT transition, if Tsv achieves the pre-condition of TE

sv, then
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Figure 4.1: Relationship between PREVAIL and EFFECTs

Tsv can’t achieve pre-condition of any other EFFECT transition TE′
sv , where < Tsv, TE′

sv >∈
AC(sv).

achieve(Tsv, TE
sv) = 1 ⇒ ∀TE′

sv : Tsv 6= TE′
sv and TE′

sv ∈ trans(sv)E and

< Tsv, TE′
sv >∈ AC(sv)

set : achieve(Tsv, TE′
sv ) = 0 (4.18)

For each state variable sv, for each can-follow pair < TP
sv, TE

sv >∈ FL(sv), if follow(TP
sv, TE

sv) =

1, then TE
sv follows TP

sv and both are included in the plan (Constraint 8).

Propagation Rule 11. On each state variable sv, for each can-follow transitions pair <

TP
sv, TE

sv >∈ FL(sv):

follow(TP
sv, TE

sv) = 1⇒ set : inplan(TP
sv) = inplan(TE

sv) = true (4.19)

Constraint 9 ensures that if follow(TP
sv, TE′

sv ) = 1, then there exists an EFFECT transition

TE
sv that achieves pre-conditions of both TP

sv and TE′
sv , as described in the Figure 4.1. On each

state variable sv, for each triplet < TE
sv, TP

sv, TE′
sv >, where TE

sv and TE′
sv are EFFECT transitions

and TP
sv is a PREVAIL transition, such that < TE

sv, TP
sv >,< TE

sv, TE′
sv >∈ AC(sv), and <

TP
sv, TE′

sv >∈ FL(sv), we propagate the following rules:

Propagation Rule 12. If TE
sv achieves the pre-conditions of both TP

sv and TE′
sv then TE′

sv must
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follow TP
sv.

achieve(TE
sv, TE′

sv ) = 1 ∧ achieve(TE
sv, TP

sv) = 1⇒ set : follow(TP
sv, TE′

sv ) = 1 (4.20)

Propagation Rule 13. If TE
sv achieves the pre-condition of TE′

sv and TE′
sv follows TP

sv, then TE
sv

must achieve the pre-condition of TP
sv.

achieve(TE
sv, TE′

sv ) = 1 ∧ follow(TP
sv, TE′

sv ) = 1⇒ set : achieve(TE
sv, TP

sv) = 1 (4.21)

Propagation Rule 14. If TE
sv achieves the pre-condition of TP

sv and TE′
sv follows TP

sv, then TE
sv

must achieve the pre-condition of TE′
sv .

achieve(TE
sv, TP

sv) = 1 ∧ follow(TP
sv, TE′

sv ) = 1⇒ set : achieve(TE
sv, TE′

sv ) = 1 (4.22)

4.2.6 Precedence Constraint Propagation

If achieve(T, T′) = 1 or follow(T, T′) = 1 or support(T, T′) > 0, then it means that both

T and T′ are included in the plan and there is a precedence constraint T → T′. On each

state variable and resource, for each transition pair < T, T′ >, a precedence relation T → T′

represents that if T and T′ are included in the plan, then T′ starts after T finishes its execution.

This precedence relation between a pair of transitions is conditionally transitive. This means

that if T → T′ holds, and T′ → T′′ holds, then T → T′′ holds, if and only if T′ is included in

the plan. Note that if T → T′ holds, then it means that T must finish its execution before T′ if

and only if T and T′ are included in the plan.

For each state variable and resource, for each pair of transitions < T, T′ >, we define

another relation anti-precedence T 9 T′, that represents that if T and T′ are included in the

plan, then T can not finish before T′ starts.

Note that each precedence relation between T and T′, implies an anti-precedence relation

between T′ and T. It means, if T must finish before T′, then T′ can’t finish before T starts.

T → T′ ⇒ T′ 9 T

In general, T′ 9 T doesn’t imply that T must finish before T′ starts. Note that the anti-

precedence relation is not transitive. Consider three transitions T, T′ and T′′, such that all are

included in the plan, and the following constraints holds:

T 9 T′ and T′ 9 T′′

From these relations we can’t conclude that T 9 T′′, because it might be the case that T →
T′′, which will imply that T′′ 9 T.
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Each precedence constraint implies a temporal constraint (Constraint 18). Since effect of

precedence relations is conditioned on the inclusion of the transitions in the plan, if transitions

are not yet decided to be included in the plan, then precedence relations have no temporal

effects. Anti-precedence relations do not have any temporal effects on transitions’ start or

end times. We use anti-precedence constraints for pruning domains of support, achieve and

follow variables.

Propagation Rule 15. On each state variable and resource, for each pair of transitions <

T, T′ > such that T → T′ holds, if T is included in the plan, then we update the start time of

T′ if T′ is not excluded from the plan. Similarly, if T′ is included in the plan, then we update

the end time of T if T is not excluded from the plan. This means that ∀T, T′s.t. T and T′ are

not excluded, we apply the following rules

inplan(T) ∧ T → T′ ⇒ post : start(T′) ≥ lb(end(T)) (4.23)

inplan(T′) ∧ T → T′ ⇒ post : end(T) ≤ ub(start(T′)) (4.24)

Each precedence constraint between a pair of transitions implies an anti-precedence rela-

tion between the transitions.

Propagation Rule 16. For each pair of transitions < T, T′ > such that neither of them is

excluded from the plan, a precedence relation T → T′ implies an anti-precedence relation.

T → T′ ⇒ post : T′ 9 T (4.25)

Note that T 9 T′ means T can’t finish its execution before T′ starts its execution.

On each state variable sv, if Tsv 9 T′sv holds and Tsv is an EFFECT transition, then Tsv

can’t achieve the pre-condition of T′sv.

Propagation Rule 17. On each state variable sv, for each pair of achieve-relevant pair <

Tsv, T′sv >∈ AC(sv), if Tsv 9 T′sv holds then Tsv can’t achieve the pre-condition of T′sv.

Tsv 9 T′sv ⇒ set : achieve(Tsv, T′sv) = 0 (4.26)

On each state variable, if TP
sv is a PREVAIL transition, and TE

sv is an EFFECT transitions,

and TP
sv 9 TE

sv holds, then TE
sv can’t follow TP

sv, if < TP
sv, TE

sv > is a can-follow pair.

Propagation Rule 18. On each state variable sv, for each can-follow pair < TP
sv, TE

sv >∈
FL(sv), if TP

sv 9 TE
sv holds, then TE

sv can’t follow TP
sv.

TP
sv 9 TE

sv ⇒ set : follow(TP
sv, TE

sv) = 0 (4.27)
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Similarly, for each pair of resource transitions on a resource, T can’t support T′ if T 9 T′

holds.

Propagation Rule 19. On each resource r, for each pair of support-relevant pair < Tr, T′r >∈
SUP(r), if Tr 9 T′r holds then Tr can’t provide support to T′r .

Tr 9 T′r ⇒ set : support(Tr, T′r) = 0 (4.28)

On each domain object to maintain the precedence and anti-precedence relation, for each

transition on the domain object we maintain the following sets during the search:

• before(T): For each transition T′ in this set, if T and T′ are included in the plan, then

T′ must finish before T starts.

• not-before(T): For each transition T′ in this set, if T and T′ are included in the plan,

then T′ must finish after T starts.

• after(T): For each transition T′ in this set, if T and T′ are included in the plan, then T′

must start after T finishes.

• not-after(T): For each transition T′ in this set, if T and T′ are included in the plan,

then T′ must start before T finishes.

When propagating, we post precedence and anti-precedence constraints between transitions.

When we post T → T′, then we add T′ in after(T) and add T in before(T′). Similarly, when

we post T 9 T′, then we add T′ in not-after(T) and add T in not-before(T′). When we

say the T → T′ holds, we mean that T ∈ before(T′), and T′ ∈ after(T). Similarly, when

we say T 9 T′ holds, we mean that T ∈ not-before(T′) and T′ ∈ not-after(T).

4.2.7 Non-Preemptive Temporal Constraint Propagation

Note that each transition is non-preemptive, meaning that for each transition T, start(T) +
dur(T) = end(T).

Propagation Rule 20. For each transition T, if T is not excluded from the plan, then its start

and end times are updated by the following rules,

(T is not excluded, and Start or End is updated)⇒

post : start(T) ≥ lb(end(T))− dur(T) (4.29)

post : start(T) ≤ ub(end(T))− dur(T) (4.30)

post : end(T) ≥ lb(start(T) + dur(T) (4.31)

post : end(T) ≤ ub(start(T)) + dur(T) (4.32)
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4.2.8 Action Start Time Distance Constraint Propagation

For each pair of actions < a, b >, where a 6= b, dist(a, b) represents the distance from

start(a) to start(b), i.e. during search we maintain: dist(a, b) = start(b) − start(a) as

described before. The value for each term can be derived from the other two terms as follows:

dist(a, b) = start(b)− start(a)

start(a) = start(b)− dist(a, b)

start(b) = start(a) + dist(a, b)

Given two interval variables [x, y] and [u, v], from interval arithmetic we know that:

[x, y] + [u, v] = [x + u, y + v] (4.33)

[x, y]− [u, v] = [x− v, y− u] (4.34)

Using the above interval arithmetic formula for addition and subtraction of intervals, we can

rewrite the right hand sides of the individual terms as follows:

start(b)− start(a) =[lb(start(b))− ub(start(a)), ub(start(b))− lb(start(a))]

start(b)− dist(a, b) =[lb(start(b))− ub(dist(a, b)), ub(start(b))− lb(dist(a, b))]

start(a) + dist(a, b) =[lb(start(a)) + lb(dist(a, b)), ub(start(b)) + ub(dist(a, b))]

For each pair of actions < a, b >, the following three propagation rules are applied to update

the start times and the distance between them.

Propagation Rule 21. If neither a nor b are excluded from the plan then update the distance

between a and b as follows:

neither a nor b are excluded ⇒ post : dist(a, b) ≥ X

post : dist(a, b) ≤ Y (4.35)

where X = lb(start(b))− ub(start(a)), and Y = ub(start(b))− lb(start(a)).

Propagation Rule 22. If a is not excluded from the plan and b is included in the plan, then the

start of a is updated as follows:

inplan(b) = true and a is not excluded ⇒ post : start(a) ≥W

post : start(a) ≤ Z (4.36)

where W = lb(start(b))− ub(dist(a, b)) and Z = ub(start(b))− lb(dist(a, b))
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Propagation Rule 23. If a is included in the plan and b is not excluded from the plan, then we

update the start time of b as follows:

inplan(a) = true and b is not excluded ⇒ post : start(b) ≥ U

post : start(b) ≤ V (4.37)

where U = lb(start(a)) + lb(dist(a, b)) and V = ub(start(a)) + ub(dist(a, b)).

In many temporal planning applications distances between action start times are repre-

sented as an Simple Temporal Network (STN), and propagated using classic STN algorithms [18].

The main difference between an STN and our proposed propagation rules are that in an STN

each time point corresponds to an action that must be included in the plan, whereas our propa-

gation rules update bounds on time points of actions that are either included in the plan or may

be excluded from the plan later.

The propagation rules, described in this section, implement the constraints described in

the previous chapter. In the following section we describe how we can infer more information

from the propagated state of the constraint model. Mainly we infer additional psestrecedence

and anti-precedence relations and use these derived relations to bound the start and end times

of the actions and transitions that can be useful to make good branching choices.

4.3 Precedence Relation Inference

On a domain object, for each pair of transitions < T, T′ >, where T and T′ are included

in the plan, a precedence constraint T → T′ implies that T′ must start after T finishes, and

an anti-precedence constraint T 9 T′ implies that T can’t finish before T′ starts. In this

section we describe how to infer precedence and anti-precedence relations between a pair of

transitions on a domain object from the absolute values of their start and end times, from the

distance between the start times of their corresponding actions, and from mutex (which we

describe in the following) relations between the transitions. In the following when we say a

pair of transitions, we mean that a pair of transitions that belongs to the same state variable or

resource. Also, note that the following rules only apply to transition pairs where none of the

transitions is excluded from the plan. This means that they are either included in the plan or

still undecided.

4.3.1 via Absolute Temporal Values

For each pair of transitions, < T, T′ >, if the earliest end time of T is greater than the latest

possible start time of transition T′, then we can deduce that T can’t finish before T′ starts, this

means that we can infer T 9 T′.



84 Solving: Branching, Propagation and Inference Techniques

Figure 4.2: Precedence Relation Inference

Inference 1. For each transition pair < T, T′ > on a state variable or a resource,

lb(end(T)) > ub(start(T′))⇒ post : T 9 T′ (4.38)

4.3.2 via Distance Constraints

For each transition Ta, where act(Ta) = a, note that start(Ta) = start(a) + offset(Ta) (Con-

straint 2), and end(Ta) = start(Ta) + dur(Ta) (Constraint 1). For each pair of transitions

< Ta, Tb >, where a and b are the corresponding actions, given the distance from a to b,

dist(a, b), we can infer precedence and anti-precedence relations by analyzing two cases as

described in Figure 4.2.

In the first case (Case (a) in Figure 4.2), given the distance dist(a, b), if the relative earliest

start of Tb with respect to the start of the action a, i.e. lb(dist(a, b)) + offset(Tb), is greater

than or equal to the relative end of Ta, i.e. offset(Ta) + dur(Ta), then we can infer that

transition Tb must start after Ta ends its execution, i.e. Ta → Tb must hold.

Inference 2. For each pair of transitions < Ta, Tb >, where act(Ta) = a and act(Tb) = b,

we infer the precedence relation between Ta and Tb as the following:

lb(dist(a, b)) + offset(Tb) ≥ offset(Ta) + dur(Ta)⇒ post : Ta → Tb (4.39)

In the second case (Case (b) in Figure 4.2), for each pair < Ta, Tb >, given the distance

between the actions a and b, if the relative earliest end of Tb, i.e. lb(dist(a, b))+ offset(Tb)+
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dur(Tb), is greater than the relative start of Ta, i.e. offset(Ta), then it means Tb can’t finish

before Ta starts, i.e. Tb 9 Ta must hold.

Inference 3. For each pair of transitions Ta and Tb on each state variable and resource, where

act(Ta) = a and act(Tb) = b, we infer anti-precedence relation between Ta and Tb as the

following:

lb(dist(a, b)) + offset(Tb) + dur(Tb) > offset(Ta)⇒ post : Tb 9 Ta (4.40)

Note that each precedence constraint implies an anti-precedence constraint, but the im-

plication does not hold in the opposite direction. This means that for a pair of transitions if

Inference 2 derives a precedence constraint, then we don’t need to execute Inference 3.

Each precedence relation implies a temporal constraints between a pair of transitions on a

domain object, that updates the distances between the start times of the corresponding actions

of the transitions. Using this updated action start time distance, on a different domain object In-

ference 2 and Inference 3 derive precedence and anti-precedence relations between transitions

of the same pair of actions. This means that Inference 2 and Inference 3 derive precedence and

anti-precedence relations between pair of transitions on a domain object from the precedence

relations posted on other domain objects.

4.3.3 via Mutex Relation on Resources

Each resource transition Tr on a resource r ∈ Rreuse ∪ Rreserve, needs to reserve req(Tr)

amount of free-space on r during the interval [start(Tr), end(Tr)). Given a pair of transi-

tions < Tr, T′r > such that req(Tr) + req(T′r) > capacity(r), we can deduce that Tr and T′r
can not overlap on r, because there will be not enough free-space to reserve. This means that

Tr and T′r must be ordered if both of them execute on r. Each pair of transitions on a resource,

where transitions have to be ordered if they execute on the resource, is called a mutex pair.

Definition 17. Mutex Pairs
Each pair of transitions Tr, T′r on a resource r ∈ Rreuse ∪ Rreserve, is called a mutex pair if the

following condition holds:

req(Tr) + req(T′r) > capacity(r)

Let mutex(Tr, T′r) denote a mutex pair on a resource r, which implies that either Tr fin-

ishes execution before T′r or starts execution after T′r finishes. In other words, for each pair

mutex(Tr, T′r), if both Tr and T′r are included in the plan, then either Tr → T′r or T′r → Tr

must hold.

Recall that Tr 9 T′r denotes that Tr can’t finish before T′r starts on the resource r. For each

mutex pair of transitions on a resource r, we propagate the following rule:
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Inference 4. For each mutex pair of transitions mutex(T, T′) on a resource r, if Tr 9 T′r
holds, then we can infer T′r → Tr.

Tr 9 T′r ∧mutex(Tr, T′r)⇒ post : T′r → Tr (4.41)

Inference 4 and Inference 1 together can be seen as a generalization of the Detectable

Precedence for unary (or disjunctive) resources [54]. Since each unary resource has a capacity

of 1, each pair of transitions is a mutex transition pair. For a unary resource when Inference 1

derives an anti-precedence constraint between a pair of transition, Inference 4 derives a prece-

dence constraint between the pair of transitions. For multi-capacity resources Inference 4 only

derives a precedence constraint if the pair is a mutex transition pair.

Recall that for each resource r ∈ Rreuse ∪ Rreserv, the solution to the transition-based con-

straint model creates a partial order schedule POS(r), where each POS(r) is a flow network

with the flow capacity(r). Nodes in the flow network are the transitions on the resource that

are included in the plan, and edges are the support links. The dummy start transition Tstart
r

is the source node, and the dummy end transition Tend
r is the sink node of the flow network.

Given any two nodes, n1 and n2 in the flow network, a path between n1 and n2 is a sequence

of directed edges that starts from n1 and ends at n2. In POS(r) there exists one or more paths

from the source node to each internal node and the sink node.

During the search we build this flow network in a step-by-step manner by including a pair

of transitions on the resource and creating a support-link between transitions. At each search

step we refine the partial network from the previous step by adding nodes and weighted edge

between nodes. Figure 4.3 shows an intermediate POS(r) on a resource r, where capacity(r) =
4, nodes Start and End denote the dummy start and end transitions, and nodes T1 to T5 denote

the transitions on r having resource requirement 2,2,3,2, and 2 respectively, and are included

in the intermediate POS(r). Each edge represents a support-link between two transitions. For

example, the edge between T1 and T4 represents that support(T1, T4) = 1.

Path From Source(PFS): For a transition Tr included in an intermediate POS(r) a Path From

Source, denoted as PFS(Tr), is a path from Tstart
r to Tr. For transition T4 in the intermediate

POS(r) described in the Figure 4.3, there is a Path From Source,

PFS(T4) = {Start 2→ T1, T1
1→ T4}

Flow of a PFS: For a transition Tr, given a PFS(Tr), let flow of the PFS(Tr) be the amount

of support that the flows through the path from Tstart
r to Tr. It is the the minimum weight of

the edges in the path. For example, flow(PFS(T4)) is 1.

Flow From Source (FFS): Given an intermediate POS(r), for a transition Tr let PFS(Tr)all

be the set of all PFS(Tr). The total amount of support that flows from Tstart
r to the transition
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Figure 4.3: Intermediate POS(r), where capacity(r)=4

Tr via different paths is called Flow From Source, denoted as

FFS(Tr) = ∑
PFS(Tr)∈PFS(Tr)all

flow(PFS(Tr))

In the implementation, at each intermediate search step, for each transition Tr, where inplan(Tr) =

true, we calculate FFS(Tr) via the following recursive formula:

FFS(Tstart
r ) = capacity(r) (4.42)

FFS(Tr) = ∑
<T′r ,Tr>∈SUP(r)

min
(
lb(support(T′r , Tr)), FFS(T′r)

)
(4.43)

FFS(Tr) denotes the total amount of support that flows directly from the dummy start

transition Tstart
r to Tr. We can interpret this as the amount of free-space that can be reserved

only by a set of transitions P before Tr starts, where each transition in P is involved in a support-

link that appears in a path in PFS(Tr)all . For all other transitions that are not in P can only

reserve capacity(r)− FFS(Tr) amount of free-space before Tr starts. The maximum value of

FFS(Tr) is req(Tr). This means that each transition in P can reserve atleast capacity(r)−
req(Tr) amount of free-space. Let T′r be a transition in P. If the pair < Tr, T′r > is not a

mutex pair, then req(Tr) + req(T′r) ≤ capacity(r). This means that T′r always have enough

free-space to reserve if it starts before Tr. But, if < Tr, T′r > is a mutex pair, i.e. req(Tr) +

req(T′r) ≥ capacity(r), and if capacity(r)− FFS(Tr) < req(T′r), then it would mean that
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T′r can’t start before Tr. Since each mutex pair must be ordered, we can deduce that T′r must

start after Tr finishes.

Inference 5. For each transition Tr on a resource r, such that inplan(Tr) = true, for each

T′r , where < Tr, T′r > is a mutex pair, and neither Tr → T′r nor T′r → Tr holds, we propagate

the following rule:

(capacity(r)− FFS(Tr)) < req(T′r)⇒ post: Tr → T′r (4.44)

For example, consider the pair of transitions < T1, T3 > in the intermediate POS(r)
described in the Figure 4.3. < T1, T3 > is a mutex pair because sum of their requirement is

5 which greater than the capacity of the resource (which is 4). We can see in the figure that

FFS(T1) = 2, which means that T3 can only reserve 4− 2 = 2 amount of free-space if it

starts before T1 finishes. Since requirement of T3 is 3, from Inference 5 we can deduce that

T3 must starts after T1 finishes, i.e. T1 → T3 must hold. Similarly, we can deduce using

Inference 5 that T2→ T3 must hold.

4.4 Temporal Inference: Lower bounding Start Times

Start times of transitions and actions are propagated at search steps by the propagation rules

as described above. In a consistent search state, after propagation each transition and action

have an admissible lower bound on the start times. In this section we describe how to infer

better lower bounds on the start times of transitions. Since the start times of transitions and

their actions are synchronized, better lower bounds on the start times of transitions imply better

lower bounds on the start times of actions.

In the following subsections we describe two different inference techniques that provide

admissible lower bounds on the start times of transitions. The first technique, given a transition

T, calculates the earliest possible time when T’s pre-condition (or demand) is going to be

satisfied, and the second technique derives the lower bound by analyzing what must happen

before T can start.

4.4.1 Lower Bound from Possible Supporters and Achievers

On each resource r, a transition can start its execution if its demand is satisfied by other tran-

sitions on r. Similarly, on a state variable sv a transition Tsv can start its execution when its

pre-condition is achieved. First we describe how we estimate an admissible lower bound on

the start times of resource transitions, and then for state variable transitions.
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4.4.1.1 For Resource Transitions

For each resource transition a lower bound on its start time can be estimated by calculating the

earliest possible time when its requirement can be fulfilled.

Possible Supporters: For a resource transition Tr, let PossSupp(Tr) denote the set of pos-

sible supporters of Tr. This means that for each T′r ∈ PossSupp(Tr), support(T′r , Tr) is

undecided.

Valid Supporters: Furthermore, let ValidSupp(Tr) denote a subset of PossSupp(Tr), such

that the total possible (maximum) support from the supporters in ValidSupp(Tr) is greater or

equal to the remaining demand of Tr.

This means that for each subset ValidSupp(Tr) ⊆ PossSupp(Tr) the following condi-

tion holds

∑
T′r∈ValidSupp(Tr)

ub
(
support(T′r , Tr)

)
≥ RemDemand(Tr) (4.45)

For each ValidSupp(Tr), the earliest possible time when it generates the collective support

for Tr, is when the last transition in ValidSupp(Tr) finishes its execution, i.e.

eft (ValidSupp(Tr)) = max
T′r∈ValidSupp(Tr)

lb(end(T′r))

Where eft(ValidSupp(Tr)) stands for earliest finish time of ValidSupp(Tr). Let VS(Tr)

be the set of all possible valid supporter sets for Tr. The earliest possible time when Tr

can be fully supported depends on the earliest finish time of the valid supporter set that has

the minimum earliest finish time among all possible valid supporter sets. This means that if

ValidSupp(Tr)min denotes such a valid supporter set, then

ValidSupp(Tr)
min = arg min

ValidSupp(Tr)∈VS(Tr)

eft (ValidSupp(Tr)) (4.46)

For a transition Tr, eft(ValidSupp(Tr)min) is a valid lower bound on the start time of Tr, i.e.

start(Tr) ≥ eft(ValidSupp(Tr)
min)

For a resource transition Tr given the PossSupp(Tr), Algorithm 1 calculates the earliest finish

time of the minimum valid support set of Tr, i.e. eft(ValidSupp(Tr)min).

Working of Algorithm 1: It first sorts the transitions in the PossSupp(Tr) in the non-

decreasing order of their earliest end times. Then it accumulates maximum supports sequen-

tially from the sorted set starting from the first element. It stops when the accumulated support

is greater than or equal to the remaining demand of Tr. It returns the earliest finish time of the

last element it scanned as the lower bound of the start time of Tr.
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Algorithm 1 get eft (PossSupp(Tr))

1: sort PossSupp(Tr) in the ascending order of earliest finish time.
2: Initialize supp = 0
3: for each Ti ∈ PossSupp(Tr) where i = 1 to | PossSupp(Tr)| do
4: supp += ub (support(Ti, Tr))
5: if supp ≥ RemDemand(Tr) then
6: return eft(Ti)
7: end if
8: end for
9: return inf

To update the lower bound on the start time of transitions we propagate the following rule

Inference 6. For each resource transition Tr, such that inplan(Tr) 6= f alse,

start(Tr) ≥ get eft (PossSupp(Tr)) (4.47)

Note that if there does not exist enough support for Tr, then Algorithm 1 returns inf (infin-

ity). It means Tr should be excluded from the plan due to lack of support.

Figure 4.4: Inference on Reservoir resource

Inference 6 on Reservoir Resources: Figure 4.4 illustrates how we can infer lower bound

on the start times of transitions on a reservoir resource r, that has capacity(r) = 5, and

init(r) = 2. There are 4 resource transitions on r that could execute on r if included in

the plan, where C1 and C2 are CONSUME transitions that can consume 2 and 4 units of
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resource respectively, and P1 and P2 are PRODUCE transitions that can produce 2 and 5

units resource respectively. All these 4 transitions have duration of 2 time units. start and

end represent the dummy start and end transitions on r. Since, r is a reservoir resource

the dummy start CONSUME transition, startCons, produces 3 units of free-space and the

dummy start PRODUCE transition, startProd, produces 2 units of resource. start provides

support to both dummy start CONSUME and PRODUCE transitions. Each weighted edge be-

tween transitions in the figure represents a support-link. Note that start, end, startProd, and

startCons are included in the plan, and the support links support(start, startCons) = 3 and

support(start, startProd) = 2 are established.

For transition C1, PossSupp(C1) = {startProd, P1, P2}. Since startPord can provide

enough support for C1 we can infer that C1 can start earliest at time point 0. Similarly, we can

infer that P1 can start earliest at 0. For transition C4, PossSupp(C4) = {startProd, P1, P2},
same as C1. We can see that together startProd and P1 can provide enough support to C4,

this means that the earliest start time of C4 is 2 time units, because earliest finish time of P1
is 2. Similarly, we can infer that the earliest start time of P2 is 2, because it could only start

after startCons and C1, and earliest end time of C1 is 2. Note that the situation in the Figure

4.4, describes a situation where none of the transitions (except for the dummy transitions) are

included in the plan and no support links involving these transitions are established. Using the

Inference 6 we are able to deduce that C2 and P2 can start earliest at time point 2.

Inference 6 on Reusable Resources: For a reusable resource, Inference 6 can not deduce a

better lower bound on the start time of transitions on it if no decisions have been made on the

support links on the resource. This is because, for each transition Tr that could execute on the

reusable resource r, initially Tstart
r will be in PossSupp(Tr). Since for each reusable resource

r, req(Tstart
r ) = init(r) = capacity(r), for each transition Tr, Tstart

r alone would be enough

to provide support to Tr, and earliest end time of Tstart
r is always 0.

However, during search after we made some decisions on the support links, Inference 6

could infer better lower bound for transitions on r. Figure 4.5 illustrates a situation on a

reusable resource r with capacity(r) = 5, and 4 BORROW transitions, T1 to T4, each

having duration 2, where the following decisions have been made: support(start, T1) = 3,

support(start, T2) = 2, and support(T1, T3) = 1. Like before, start and end denote the

dummy start and end transition on r. Note that except for T4, all other transitions in the Figure

4.5 are included in the plan. Given the decisions that have already been made (each edge

represents a decision, a support-link), we are interested to infer the lower bound on the start

time of T4 that requires 5 units of resource. For T4, PossSupp(T4) = {T1, T2, T3}, where

T1 and T2 can provide 2 units of resource each, and T3 can provide 1 unit of resource. This

means that using Inference 6 we can infer that T4 could only start at time point 4, because the

maximum of the earliest end times of the transitions in the set {T1, T2, T3} is 4 (we assume
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Figure 4.5: Inference on Reusable resource

that the earliest start time of T1 and T2 is 0).

Special cases of Inference 6: Inference 6 describes how to get a lower bound on the start

time of a transition based on its PossSupp set. For a transition Tr, such that Tr is included in

the plan, we can infer support links related to Tr using the following two inference rules.

For a resource transition Tr, such that inplan(Tr) = true, if PossSupp(Tr) contains only

one transition T′r , then we can deduce that T′r must provide support to Tr. This means that for

each transition Tr we apply the following inference rule:

Inference 7. For each transition Tr, if inplan(Tr) = true and | PossSupp(Tr)| = 1, then

∀T′r ∈ PossSupp(Tr) : set : support(T′r , Tr) = ub(support(T′r , Tr)) (4.48)

Similarly, for a transition Tr, where inplan(Tr) = true, if the total possible support from

all transitions in PossSupp(Tr) is equal to the remaining demand of Tr, then we can deduce

that all these transitions must support to Tr.

Inference 8. For each transition Tr, if

inplan(Tr) = true and ∑
T′r∈PossSupp(Tr)

ub(support(T′r , Tr) = RemDemand(Tr)
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Figure 4.6: Inference on State Variable

then ∀T′ ∈ PossSupp(Tr)

set : support(T′r , Tr) = ub(support(T′r , Tr)) (4.49)

Note that the Algorithm 1 can be easily extend to implement Inference 7 and Inference 8.

4.4.1.2 For State Variable Transitions

For each state variable transition Tsv on a state variable sv, a similar principle can be applied to

estimate a lower bound on the start time of Tsv. Let PossAchiev(Tsv) represent the set of tran-

sitions that can achieve the pre-condition of Tsv, this means that each T′sv ∈ PossAchiev(Tsv),

achieve(T′sv, Tsv) is undecided. Each state variable transition Tsv needs only one transition

from PossAchiev(Tsv) . Let Tmin
sv ∈ PossAchiev(Tsv) be a transition that has the mini-

mum of the earliest end times of transition in PossAchiev(Tsv). The earliest time when Tsv

can start is the earliest finish time of Tmin
sv . For each non-excluded state variable transition we

propagate the following rule.

Inference 9. For each state variable transition Tsv, such that Tsv is not excluded from the plan:

start(Tsv) ≥ min
T′sv∈PossAchiev(Tsv)

lb(end(T′sv)) (4.50)

Figure 4.6 illustrates an initial situation on a state variable sv, where init and goal are

the initial and goal state of sv. Ts and Te are the dummy start and end transitions on sv.
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All transitions on sv are undecided, except for Ts and Te that must be included in the plan.

Here we assume that each transition from T1 to T10 have duration 2 time units. Given this

situation, Inference 9 infers the tightest possible lower bound on the start times for transitions.

For example, consider the transition T3, that has PossAchiev(T3) = {Ts}. Inference 9

deduces that T3 can start earliest at time point 0. We can derive the same for T4. For T9,

where PossAchiev(T9) = {T3, T4}, we infer that T9 can only start earliest at 2. Similarly

we can deduce that the earliest start time for Te is 4. This means that, from the initial situation,

using the Inference 9, we can deduce that for sv goal can be achieved earliest at 4 time points.

As we have shown for resource transitions, based on PossAchiev set of a transition we

can infer the achiever of the pre-condition of the transition using the following rule:

Inference 10. For each state variable transition Tsv, if inplan(Tsv) = true and | PossAchiev(Tsv)| =
1, then we infer the following: ∀T′sv ∈ PossSupp(Tsv)

set : achieve(T′sv, Tsv) = 1 (4.51)

This rule is the unit propagation rule for achieve variables.

4.4.2 Lower Bound from Active Precedence Constraints

Given a precedence constraint T → T′, it implies that T′ must start after T finishes, where

T and T′ belong to the same resource or state variable. If T is included in the plan, i.e.

inplan(T) = true, then call the precedence constraint T → T′ an active precedence con-

straint for T′.

Definition 18. Active Precedence Relation
For each pair of transitions < T, T′ >, where obj(T) = obj(T′), the precedence relation

T → T′ is called an active precedence relation for T′, if T is included in the plan, i.e.

inplan(T) = true.

For each transition T, we define a set UnSupported Before (USB) as follows:

Definition 19. UnSupported Before (USB)
For each transition T, the set of all transitions T′ such that:

• T′ → T is an active precedence relation for T

• if T is a resource transition, then T′r is not yet fully supported, i.e.

RemDemand(T′r) > 0
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• if T is a state variable transition on a state variable sv, then its pre-condition is not yet

achieved, i.e.

@ < T′, T >∈ AC(sv) : achieve(T′, T) = 1

is called the UnSupported Before (USB) set of T, and denoted by USB(T).

For a transition T, the transitions in USB(T) must be scheduled on the domain object

(obj(T)), before T can start its execution.

Frontier: Let frontier(T) be a schedule of the transitions in USB(T) on obj(T). If T is a

state variable transition, then each transition in frontier(T) must be totally ordered, except for

the PREVAIL transitions that require same state. If T is a resource transition, then frontier(T)
must be a safe schedule (as described in Definition 7, page 7) that satisfies the resource require-

ments of the transitions without over- or under-flowing the resource obj(T).

Makespan of Frontier: Let makespan(frontier(T)) denotes the makespan of the schedule

frontier(T), which the maximum of the earliest end times of the transitions in the schedule,

i.e.

makespan(frontier(T)) = max
T′∈frontier(T)

lb(end(T′)) (4.52)

Transition T can only start after the schedule frontier(T). Given a transition T, there can

be multiple frontier(T). Let frontier(T)min represent a frontier(T) that has the optimal

makespan. We can deduce that T must start after frontier(Tr)min, i.e.

start(T) ≥ makespan
(

frontier(T)min
)

(4.53)

In this section we describe for a transition T, how we estimate an admissible bound on

makespan(frontier(T)min). In the following, first we describe how we do it for resource

transitions and then we describe for state variable transitions.

4.4.2.1 For Resource Transitions

There are two types of resource: reusable and reservoir, and three types of resource transitions:

BORROW on reusable resources, and CONSUME and PRODUCE on reservoir resources. On

a reusable resource r, given a set of BORROW transitions, it is always possible to create a safe

schedule if we ignore any constraints on the end times of transitions. This is the case because

each transition consume some resource in the beginning and produce the same amount at the

end, if we can delay transitions they will eventually get a chance to execute on the resource.

This is not true for reservoir resources. For a reservoir resource, given a set of CONSUME

and PRODUCE transitions, existence of a safe schedule will depend on the amount of resource
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Figure 4.7: Example of USB(T4)

available in the beginning, and if there exists enough CONSUME transitions to support all

PRODUCE transitions and enough PRODUCE transitions to support all CONSUME transi-

tions.

Generalize Resource Requirements based on Free-Space: For a transition Tr on a resource

r, irrespective of the type of Tr and r, one fact is always true: Tr reserves req(Tr) amount of

free-space on r with the interval [start(Tr), end(Tr)). In any safe schedule of transitions

on a resource, total reservation any overlapping set of transitions must be less than or equal to

capacity(r). On each reservoir resource, to estimate makespan(frontier(T)) we ignore the

type of transitions on the reservoir resource, instead we consider the following:

• Each reservoir resource r is a reusable resource that can provide capacity(r) amount of

free-space at start

• Each transition on r consumes req(Tr) amount of free-space at the start, and produces

req(Tr) amount of free-space at the end.

This means that we relax a reservoir resource as a reusable resource, by considering each pair of

transitions on the reservoir resource as a support-relevant pair (with respect to free-space).

With this relaxation all resources will be considered as reusable resource, and we can create a

safe schedule on them by ignoring any constraints on end times of the transitions.

Figure 4.7 illustrates an example where we have a resource transition T4 and its USB(T4) =
{T1, T2, T3}, where T1, T2 and T4 have duration of 2, and T3 has duration of 4. Each tran-

sition has requirement of 2, and the resource has capacity of 4. The earliest start time for T1
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Figure 4.8: Example of frontier(T4)min

is 3, for T2 it is 4, for T3 it is 1, and for T4 it is 6. Each edge between a pair of transitions

represents an active precedence constraint.

Given a transition Tr on a resource r, and its USB(Tr) we need to find a schedule, denoted

by frontier(Tr)min, that solves the following scheduling problem optimally (w.r.t. makespan):

Definition 20. The Resource Allocation Problem
Find a partial order schedule on a multi-capacity reusable resource r (capacity(r)), for a set

of activities (the transitions in USB(Tr)), where each activity has a release date (earliest start

time of the transition) and a fixed duration (duration of the transition).

Note that each partial order schedule on a resource r, starts with the dummy start transi-

tion Tstart
r , ends with the dummy end transition Tend

r , and each transition, except Tstart
r , must

be fully supported via support links from other transitions in the partial order schedule. This

means that frontier(Tr)min is a partial order schedule on r, that solves the resource allocation

problem defined in Definition 20, and has the optimal makespan. Note that makespan of a

partial order schedule on a resource r is earliest start time of Tend
r . Figure 4.8 shows an ex-

ample of a frontier(T4)min for the resource allocation problem illustrated in the Figure 4.7.

Tstart and Tend represent the dummy start and end transition respectively on the resource r.

The dotted weighted edges between transitions represents the support links. The makespan of

frontier(T4)min is 7 in this example.

Calculation of the Optimal Makespan Schedule
To calculate frontier(Tr)min, we use a data structure called a frontier queue (FQ), which
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is a sorted list of support nodes (SN), where each support node represents a transition in

USB(Tr). We use the notation SN(T′r) to represent a support node corresponding to the tran-

sition T′r ∈ USB(Tr). For each SN(T′r) we have the following attributes and values:

• SN(T′r).demand = req(T′r)

• SN(T′r).support = req(T′r)

• SN(T′r).dur = dur(T′r)

• SN(T′r).start = lb(start(T′r))

• SN(T′r).end = SN(T′r).start + SN(T′r).dur

The FQ maintains the following two invariant properties:

1. Support nodes in FQ are ordered in non-decreasing end values.

2. For each SN in FQ, SN.demand = 0.

Algorithm 2: Algorithm 2 describes how a support node SN is added to FQ, such that FQ
maintains the property that each support node in FQ is fully supported. It scans the list from

the beginning and accumulates support for SN. Note that the support nodes in FQ are always

ordered in non-decreasing end values. Each time a support has been found from an existing

support node SN′, Algorithm 2 updates the remaining demand of SN and remaining support

of SN′ (lines 3-6). Since these supports induce precedence constraints, it updates the SN.start
value accordingly (line 7). Note that, this represents posting a support-link between SN′ and

SN. After the demand of SN is fulfilled, Algorithm 2 adds SN into FQ (line 12), which refers

to two steps: adding SN into FQ and resorting FQ.

Algorithm 2 ADD SN in FQ
1: for each SN′i ∈ FQ, where i = 1 to | FQ | do
2: if SN.demand > 0 then
3: n demand = max(0, SN.demand− SN′i .support)
4: n support = max(0, SN′i .support− SN.demand)
5: SN′i .support = n support
6: SN.demand = n demand
7: SN.start = max ((SN′i .end, SN.start)
8: SN.end = SN.start + SN.dur
9: else

10: break
11: end if
12: end for
13: add SN into FQ
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Algorithm 3: For each transition Tr Algorithm 3 calculates the makespan of the schedule

frontier(Tr)min. It first adds a support node corresponding to the dummy start transition

Tstart
r , SN(start), in FQ (line 1). SN(start) is initialized as follows:

• SN(start).demand = 0

• SN(start).support = req(Tstart
r )

• SN(start).dur = dur(Tstart
r )

• SN(start).start = 0

Note that demand of SN(start) is 0, because we assume Tstart
r is always fully supported,

and its earliest start time (release date) is 0. After adding SN(start), Algorithm 3 adds the

support nodes corresponding to the transitions in USB(Tr) in the non-decreasing order of their

earliest start time (lines 2-5). Each support node is initialized as described above. After adding

all support nodes for transitions in USB(Tr) to FQ, it adds a support node SN(end) that

corresponds to the dummy end transition Tend
r (line 6), which in initialized as follows:

• SN(end).demand = req(Tend
r )

• SN(end).support = 0

• SN(end).dur = dur(Tend
r )

• SN(end).start = 0

The support of SN(end) is 0, because Tend
r can not provide support to any other transition.

Note that the earliest start time of SN(end) is 0. This is because SN(end) corresponds to the

dummy end transition on r for the the resource allocation problem as defined in Definition 20,

not the original Tend
r of the planning problem. After adding the support node SN(end) in FQ,

Algorithm 3 returns the end value of SN(end). The FQ created by Algorithm 3 is a schedule

Algorithm 3 get est(Tr)

1: Add SN(start) in FQ.
2: Sort USB(Tr) non-decreasing est
3: for each T′i ∈ USB(Tr), where i = 1 to |USB(Tr)| do
4: add SN(T′i ) in FQ
5: end for
6: Add SN(end) in FQ.
7: return SN(end).end

frontier(Tr)min that has the optimal makespan, and returns the end time of the support node

SN(end), which is the makespan of frontier(Tr)min.

Since Algorithm 3 calculates the optimal shcedule of the USB set, we update the lower

bound on the start times of transitions via the following inference rule:
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Inference 11. For all resource transition Tr, such that inplan(Tr) 6= f alse,

start(Tr) ≥ get est(Tr) (4.54)

Proof of Correctness
Let seq(frontier(Tr)min) be a topological sort of the partial order schedule frontier(Tr)min.

Note that in the sequence seq(frontier(Tr)min the first transition is the dummy start transition

and last transition is the dummy end transition on r.

Proposition 1. If we add transitions using Algorithm 2, in the same sequence as in seq(frontier(Tr)min)

the end time of the last element in the resultant FQ is the makespan of frontier(Tr)min.

Proof: To show this we will show that when a support node of a transition is added in FQ,

it starts at its earliest start time. We prove this by induction.

Base Case: Note the first support node to add in FQ is the support node SN(start) which

corresponds to the dummyTstart transition, that has demand = 0 and start = 0. Algorithm 2

adds the support node immediately without updating the start time. It means the support node

SN(start) can start at time point 0, which is its earliest start time.

Inductive Step: Let assume that the support node corresponding to the ith transition in seq(frontier(Tr)min)

starts at its earliest start time. When we add the support node corresponding to the i + 1th tran-

sition in seq(frontier(Tr)min) into FQ, Algorithm 2 finds support for its demand from the

support nodes that are already in FQ sequentially starting from the first element in FQ. Note

that support nodes in FQ are fully supported and sorted in the non-decreasing order on the

end times. All these support nodes are the only possible supporters of SN(Ti+1), because the

corresponding transitions of these support nodes appear before Ti+1 in seq(frontier(Tr)min).

This means that each time Algorithm 2 finds a support for the demand of SN(Ti+1), it would

be earliest possible time that SN(Ti+1) can get the support. This means that the start time that

Algorithm 2 determines for the support node SN(Ti+1) is the earliest possible start time for

Ti+1.

This means that each transition that is added in FQ always start at its earliest start time.

The last support added to FQ is the support node SN(end), because the last transition in

seq(frontier(Tr)min) is the dummy end transition on r. Since Algorithm 2 determine the

earliest start time of each support node, SN(end) will start at its earliest start time, which is

the makespan of frontier(Tr)min. Since SN(end).dur = 0, the end time of SN(end) is same

as its start time.

This proves that if we add transitions using Algorithm 2, in the same sequence as in

seq(frontier(Tr)min) the end time of the last element in the resultant FQ is the makespan

of frontier(Tr)min. �
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Proposition 2. For a transition Tr, Algorithm 3 returns optimal makespan of a partial order

schedule of the transitions in USB(Tr) on r.

Proof: Suppose seq(frontier(Tr)min) is a topological sort of the partial order schedule

frontier(Tr)min, where the first transition is the dummy start transition, and last transition in

the dummy end transition.

For any two transition Ti and Ti+1 in the sequence seq(frontier(Tr)min), such that lb(start(Ti)) >

lb(start(Ti+1)) and Ti and Ti+1 are not the dummy start or end transition, if there exists a third

transition Tk, such that k > i + 1 and the precedence relations Ti → Tk and Ti+1 → Tk hold

in the partial order schedule, then The lower bound of the start time of Tk will depend on the

following two cases (among other things):

• case 1: If Ti → Ti+1 doesn’t hold in the partial order schedule, then the lower bound on

the start time of Tk in the partial order schedule would be atleast:

max{lb(start(Ti)) + dur(Ti), lb(start(Ti+1)) + dur(Ti+1)} (4.55)

• case 2: If Ti → Ti+1 holds in the schedule, the lower bound on the start time of Tk would

be atleast:

max{lb(start(Ti)) + dur(Ti) + dur(Ti+1), lb(start(Ti+1)) + dur(Ti+1)} (4.56)

If we swap the positions of Ti and Ti+1, then for case 1 above there will be no effect on the

lower bound on the start time of Tk. If case 2 is true, then the lower bound on the start time of

Tk would be atleast:

max{lb(start(Ti+1)) + dur(Ti+1) + dur(Ti), lb(start(Ti)) + dur(Ti)} (4.57)

Note that the lower bound from equation 4.57, can not be greater than the lower bound from

equation 4.56. This is the case because both terms in equation 4.57 is smaller than the first

term in equation 4.56 (recall that lb(start(Ti)) > lb(start(Ti+1)). Applying this repeat-

edly, we can find another sequence, where the dummy start transition appears in the first po-

sition and dummy end transition appears in the last position, and all transitions in between

are sorted in non-decreasing order of their earliest start time, which have the same makespan

as seq(frontier(Tr)min). This means that the new sequence is also a topological sort of the

partial order schedule frontier(Tr)min. Algorithm 3 add transitions exactly in this sequence.

In Proposition 1,we have shown that if we add support node corresponding to the transitions in

this order, it return the makespan of frontier(Tr)min. �

Comparison with the Energy Precedence Constraint
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This inference technique can be seen as a generalization of the Energy Precedence Constraint

[36] on reusable resources. Given a reusable resource r, for each transition Tr, if there exists

a set of transitions be f ore(Tr), where each transition T′r ∈ be f ore(Tr), T′r must execute on r,

and T′r → Tr holds, then the energy precedence constraint infers the earliest start time of Tr as

the following:

start(Tr) ≥
(

min
T′r∈be f ore(Tr)

lb(start(T′r))
)
+

⌊
∑T′r∈be f ore(Tr) req(T′r) ∗ dur(T′r)

capacity(r)

⌋
(4.58)

Consider the example described in the Figure 4.7 (see Section 4.4.2.1 on page 95). The energy

precedence constraint calculates the earliest start time of T4 as follows:

start(T4) ≥ lb(start(T1)) +

⌊
(2 ∗ 2 + 2 ∗ 4 + 2 ∗ 2)

4

⌋
≥ 1 +

⌊
16
4

⌋
≥ 1 + 4

≥ 5 (4.59)

For this example, Inference 11 which uses Algorithm 3 to calculate the makespan of a schedule

on the USB set, derives the earliest start time for T4 to 7, which is tighter than the value

(5) deduced by the energy precedence constraint. This is because both energy precedence

constraint and Inference 11, estimate the makespan of a schedule for the resource allocation

problem (Definition 20), but Inference 11 does that optimally (Porposition 2). This means that

we can claim the following:

Proposition 3. Given a transition Tr and its USB(Tr), where r is a reusable resource, Infer-

ence 11 derives a lower bound on the start time of Tr that is always atleast as good as a lower

bound derived by the energy precedence constraint.

4.4.2.2 For State Variable Transitions

For each state variable sv, we can propagate better lower bounds on the start times of tran-

sitions on the state variable by considering what must happen before each transition. For

a transition Tsv, USB(Tsv) represents the set of transitions that must occur before Tsv, and

whose pre-conditions are not achieved. Recall that all transitions on a state variable must be

totally ordered, except for the PREVAIL transitions that need same state of the state variable

to execute. Let USB(Tsv)linear ⊆ USB(Tsv) represent a subset of transitions such that there

exists no two PREVAIL transitions that need same state in USB(Tsv)linear.

For each Tsv, USB(Tsv) may contain more than one PREVAIL transitions that need same
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Figure 4.9: Example of PREVAIL estimation

state. Given USB(Tsv) we estimate USB(Tsv)linear as follows:

1. First we make a copy of USB(Tsv) and rename it to USB(Tsv)linear.

2. Then for each state s ∈ dom(sv) of the state variable sv we create a set pars, that

contains the PREVAIL transitions from the set USB(Tsv)linear that need the state s.

3. We optimistically assume that all active PREVAIL transitions in each pars will maxi-

mally overlap. For each set of PREVAIL transitions in each non-empty pars, we create

a new PREVAIL transition Tp
s , where the earliest start time of Tp

s equals the minimum

of the earliest start times of the transitions in pars, i.e.

est(Tp
s ) = min

T′sv∈pars
est(T′sv)

and the duration of Tp
s equals to the maximum of the durations among the transitions in

pars, i.e.

dur(Tp
s ) = max

T′sv∈pars
dur(T′sv)

Since Tp
s is a non-preemptive, the earliest end of Tp

sv is the earliest start plus the duration,

i.e.

eft(Tp
s ) = est(Tp

s ) + dur(Tp
s )

4. For each non-empty pars, we delete all PREVAIL transitions in it from USB(Tsv)linear
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and add the corresponding PREVAIL transition Tp
s in USB(Tsv)linear.

Figure 4.9 describes an example where for pars has two PREVAIL transitions: T1 and T2,

where est(T1) = 1, dur(T1) = 2, est(T2) = 2, and dur(T2) = 6. So pars = {T1, T2}.
Transition T3 represents the replacement PREVAIL transition for T1 and T2, where est(T3) =
1 and dur(T3) = 6. For a transition Tsv, if T1, T2 ∈ USB(Tr), then we delete T1 and T2,

and add T3 in USB(Tsv)linear. This means that all the transitions in USB(Tsv)linear must be

executed sequentially before Tsv.

Prefix: We call a sequential execution of the transitions in USB(Tsv)linear a prefix of Tsv,

denoted as prefix(Tsv). The earliest finish time of a prefix(Tsv) is the earliest finish time of

last transition in prefix(Tsv). Let prefix(Tsv)min denotes a prefix of Tsv that has the minimum

of the earliest finish times among all possible prefix sequences for Tsv. Tsv can only start exe-

cution after eft(prefix(Tsv)min).

Algorithm 4: Algorithm 4 calculates the eft(prefix(Tmin
sv )). It first creates USB(Tsv)linear

from USB(Tsv), and then sort USB(Tsv)linear in the non-decreasing order of the est of the

transitions, and then calculate the end time of the sequence.

Algorithm 4 get prefix end(Tsv)

1: Create USB(Tsv)linear from USB(Tsv)
2: Initialize prefix .end = 0.
3: Sort USB(Tsv)linear in non-decreasing earliest start times
4: for each T′i ∈ USB(Tsv)linear, where i = 1 to |USB(Tsv)linear| do
5: prefix .end = max ((prefix .end + dur(T′i ), eft(Ti))
6: end for
7: return prefix .end

For each state variable sv we propagate the following rule:

Inference 12. For each state variable transition Tsv, such that inplan(Tsv) 6= f alse,

start(Tsv) ≥ get prefix end(Tsv) (4.60)

Proof of Correctness
On a state variable all transitions, except for the PREVAIL transitions that require same state,

must be totally ordered. As we have discussed earlier, a state variable can be seen as a reusable

resource with capacity 1, where all transitions must be sequenced. Given a transition Tr and

its USB(Tr), where r is a reusable resource with capacity 1, Algorithm 3 returns the optimal

makespan of the schedule on r of the transitions in USB(Tr). In this case the schedule is a

sequence of transitions with optimum makespan. Algorithm 4 can be seen as a special case of

Algorithm 3, where it sequences the transitions in USB(Tsv)linear, and return the makespan.
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Since it is a spacial case of Algorithm 3, it returns the optimal makespan, which is indeed a

lower bound on the start time of Tsv.

4.4.3 Inferring Upper Bounds of End Times

We have described here how to infer lower bounds on the start times of transitions, by con-

sidering how to satisfy the pre-conditions and requirements, and what must happen before a

transition. We can use similar techniques to infer upper bounds on the end times of transitions,

by considering how post-conditions of transitions could satisfy pre-conditions of other transi-

tions, and what must happen after a transition. We don’t discuss these techniques here, because

the basic principle remains the same, except for the PREVAIL transitions.

4.4.3.1 For PREVAIL transitions

A PREVAIL transition Tp
sv on a state variable sv does not achieve pre-condition of any tran-

sition, but we know that if Tp
sv is included in the plan there must be an EFFECT transition

that must immediately follow it, because a PREVAIL transition always executes between two

EFFECT transitions.

Possible Followers: Let PossFollow(Tp
sv) represent a set of EFFECT transition that can fol-

low Tp
sv if Tp

sv is included in the plan. This means that for each transition Tsv ∈ PossFollow(Tp
sv),

< Tp
sv, Tsv >∈ FL(sv) and ub(follow(Tp

sv, Tsv)) > 0. Since there will be exactly one

T ∈ PossFollow(Tp
sv) could follow Tp

sv in the final plan, we infer the upper bound of the end

time of Tp
sv as follows:

Inference 13. For each PREVAIL transition Tp
sv,

end(Tp
sv) ≤ max

Tsv∈PossFollow(Tp
sv)

ub(start(Tsv)) (4.61)

For a PREVAIL transition, Tp
sv if Tp

sv is active and there is only one EFFECT transition Tsv

in PossFollow(Tp
sv), then we can deduce that Tsv must follow TP

sv.

Inference 14. For each PREVAIL transition Tp
sv, if inplan(Tp

sv) = true and | PossFollow(Tp
sv)| =

1, then we infer the following: ∀T′sv ∈ PossFollow(Tp
sv)

set : follow(Tp
sv, Tsv) = 1 (4.62)

4.5 Support Inference from Precedence Constraints

Given a support-relevant pair of transitions < Tr, T′r > on a resource r, in this section we

describe how to infer an upper bound on support(Tr, T′r), by analyzing what must happen



106 Solving: Branching, Propagation and Inference Techniques

in between Tr and T′r . Note that support(Tr, T′r) = δ means that Tr provides δ amount of

support to T′r directly. For each pair < Tr, T′r >∈ SUP(r), we define must be between (MB)
set of transitions as follows.

Definition 21. Must be Between Set
On each resource r, for each support-relevant pair < Tr, T′r >∈ SUP(r), the Must be Between

set, denoted as MB(Tr, T′r), is a set of all transitions T′′r that satisfies the following conditions:

• T′′r is included in the plan, i.e. inplan(T′′r ) = true

• T′′r is not fully supported, i.e. RemDemand(T′′r ) > 0

• Tr → T′′r and T′′r → T′r holds.

• < Tr, T′′r > is a support-relevant pair, i.e. < Tr, T′′r >∈ SUP(r).

Note that on a reservoir resource, if Tr is a PRODUCE transition, then T′r and all transitions

in MB(Tr, T′r) are CONSUME transitions. Similarly, if Tr is a CONSUME transition, then T′r
and all transitions in MB(Tr, T′r) are PRODUCE transitions.

Let Demand(MB(Tr, T′r) be the maximum of the remaining demands of the transitions in

MB(Tr, T′r), i.e.

Demand(MB(Tr, T′r)) = max
T′′r ∈MB(Tr ,T′r)

RemDemand(T′′r )

The set of transitions in MB(Tr, T′r) must be executed between Tr and T′r . All transitions,

including Tr, that can provide support to the transitions in MB(Tr, T′r) must provide at least

Demand(MB(Tr, T′r)) amount of support to the set. This means that the maximum amount

of support that any transition, which executes before the set MB(Tr, T′r), including Tr, can

provide to T′r is

capacity(r)− Demand(MB(Tr, T′r))

For each resource r we execute the following inference rule:

Inference 15. For each support-relavant pair < Tr, T′r >, such that MB(Tr, T′r) is non-empty,

we can estimate the maximum amount of support that Tr can provide to T′r directly as the

following:

support(Tr, T′r) ≤ capacity(r)− Demand(MB(Tr, T′r)) (4.63)

Figure 4.10 shows a support-relevant pair < T1, T4 > on a resource that has capacity 6,

where ub(support(T1, T4)) = 3. Transitions inside the dotted line represent MB(T1, T4)
that contains 2 transitions: T2 and T3, where RemDemand(T2) = 3 and RemDemand(T3) =
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Figure 4.10: Example of Must be Between set

4. The arrows in the Figure 4.10 between the transitions represent the precedence relations be-

tween transitions. In this case Demand(MB(T1, T4)) = 4. Inference 15, updates the upper

bound of support(T1, T4) as follows:

support(T1, T4) ≤ Capacity− Demand(MB(T1, T4))

≤ 6− 4

≤ 2

This means that maximum amount of support that T1 can provide to T4 is 2.

4.6 Related Work

Our aim is to produce a flexible plan for a given planning problem by compiling the planning

problem (bounded by the number of instances of actions) to a CSP, and extract a flexible plan

form the solution to the CSP. Solving the compiled CSP, the transition-based constraint formu-

lation of the planning problem, has two main aspects: how to branch on decision variables and

how to propagate constraints and infer bounds on constraint variables. In this section we com-

pare our work on solving the transition-based constraint formulation with other approaches in

the planning and scheduling literature that solve planning and scheduling problems.
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4.6.1 Related Branching Schemes

In the transition-based constraint formulation there are three main decision variables: achieve
and follow variables for state variable transitions, and support variables for resource tran-

sitions. We first discuss the related work on branching on state variable transitions variables,

and next we discuss the related work on branching on resource transitions variables.

4.6.1.1 Branching on State Variables

Our branching strategy for state variable transitions, i.e. branching on achieve and follow
variables, can be seen as posting causal links as in POCL planning. This branching scheme

is similar to the branching scheme used in the optimal temporal planner CPT [52]. In CPT

the decision variables are the pre-conditions of actions, and it branches on possible support

from actions that achieves the pre-condition. For each state variable transition we consider

other state variable transitions instead of actions as possible supporters as it is in CPT. This

is because we model each action’s pre-condition and effects together as transitions on each

state variable separately. The other difference with CPT is that by distinguishing between

EFFECT and PREVAIL transitions, and having the requirement that all EFFECT transitions

are sequenced on a state variable and that PREVAIL transitions are not allowed to overlap with

EFFECT transitions, our branching strategy ensures that there will be no threats in the final

plan. CPT adds extra constraints to eliminate threats from a plan.

4.6.1.2 Branching on Resources

In the constraint-based scheduling literature, a flexible schedule, also know as a partial-order

schedule [42], is generally produced by a two step precedence constraint posting (PCP) [10] ap-

proach, which first finds a potential conflict on a resource and then posts precedence constraints

between activities to resolve the resource conflict. If there is no conflict on any resource, then

the partially ordered set of activities represents a valid partial-order schedule on each resource.

There are two commonly used techniques to find resource conflicts: the clique-based method,

and the profile-based method.

Clique-based method: This method was mainly developed for reusable resources, but it can

be extended to reservoir resources as well. The main idea is to create a graph for each resource

where nodes are the transitions on the resource, and two nodes are connected via a undirected

edge if they overlap in time. Any clique in the graph, where the transitions in the clique to-

gether produce or consume more than the capacity of the resource, is called a critical set.

Each critical set represents a resource conflict (also known as a peak). To resolve the resource

conflict, we need to put enough precedence constraints between pairs of transitions (note that

each precedence constraint makes the pair of transitions non-overlapping) in the peak such that
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the subset of overlapping transitions’ total production or consumption lies between 0 and the

capacity of the resource. The idea is to find a minimal clique called a Minimal Critical Set

(MCS). The resource conflict that a MCS represents can be resolved by posting a single prece-

dence constraint between a pair of transitions. For any given pair < T1, T2 >, there are two

possible ways to resolve the conflict, either posting T1 → T2 or T2 → T1. These precedence

relations are called the resolvers of the conflict.

Profile-based method: Profile-based methods [10, ?, 42, 21] can be applied to both reservoir

and reusable resources. In these method each transition is modeled with two possible resource

events: a consume resource event at the start, and a produce resource event at the end. Require-

ments of consume resource events are represented as negative integers, and requirements of

produce events are represented as positive integers. Let v(e) denote the requirement of event e,

and t(e) denote the time when event e executes. Given a BORROW transition Tr, two resource

events are created: a consume event cTr where v(cTr) = − req(Tr) and t(cTr) = start(Tr),

and a produce event p(Tr) where v(p(Tr)) = req(Tr) and t(pTr) = end(Tr), and these two

events are constrained with the following temporal constraint.

t(cTr) + dur(Tr) = t(pTr)

For each CONSUME transition only the consume event is created, and each PRODUCE tran-

sition only the produce event is created. A precedence constraint between two resource events

e → e′ implies a temporal constraint t(e′) ≥ t(e). In the rest of the discussion we assume

that temporal constraints between resource events are consistent. Generally in the constraint-

based scheduling literature consistency of the temporal constraints between resource events is

maintained via a STN [18].

Given a resource event e on a resource r, the profile-based method calculates the resource

envelopes before and after the event. A resource envelope is an interval that represents the

minimum and maximum amount of resource available for use at a certain time point. Let

[L(e)<min, L(e)<max] be the resource envelope just before t(e). In the following we describe the

general idea for calculating a resource envelope given a resource event e. Let B(e) be the set

of resource events that must execute before e, and U(e) be the set of resource events that are

not ordered with e. Let P(r) and C(r) denote the set of all production events and consume

events respectively. Note that all events in B(e) must be executed before e. To estimate the

maximum amount resource that could be available before e, i.e. L(e)<max, we assume that all

produce events, that are not ordered after e, execute before e.

L(e)<max = init(r) + ∑
e′∈B(e)

v(e) + ∑
e′∈P(r)∩U(e)

v(e′) (4.64)

Similarly, to estimate the minimum amount of resource available before e, i.e. L(e)<min, we
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assume that all consume events, that are not ordered after e, execute before e.

L(e)<min = init(r) + ∑
e′∈B(e)

v(e) + ∑
e′∈C(r)∩U(e)

v(e′) (4.65)

An event e is not safe if the following conditions does not hold:

0 ≤ L(e)<min ≤ L(e)<max ≤ capacity(r)

This means that if L(e)<max > capacity(r) or L(e)<min < 0, we say there is a resource conflict

and e is not a safe event. Note that if L(e)<max > capacity(r), then it means that some con-

sumption events in U(e) must be executed before e to make e safe. Similarly, if L(e)<min < 0,

then some production events in U(e) must be executed before e to make e safe. These possible

precedence constraints are called the possible resolvers of the conflict.

Branching Scheme: A PCP-based search algorithm, that uses the two step conflict-resolving

approach, can be seen as a meta-CSP approach. Each meta-CSP variable represents a resource

conflict, and possible resolvers of the conflict are the possible values for the meta-CSP vari-

able. At each step, the search selects a conflict and picks a resolver for the conflict. After

selecting the resolver (which is a precedence constraint between two resource events) it propa-

gates the temporal constraints implied by the resolver. If the temporal propagation results in a

inconsistent state it chooses another resolver. If all resolvers fail to resolve the conflict, search

backtracks. The problem is solved when there is no conflict left to solve.

Our Branching Scheme: As stated before, in this thesis we have taken a different resource

reasoning approach to produce partial-order schedules on resources. Our approach is based on

finding support for resource transitions, that are included in the plan, by posting support links.

We branch by deciding how much support a resource transition provides to another resource

transition. This idea can be seen as an adaptation of the idea of posting causal links between

state variable transitions. At each branching point we decide that either a transition T provides

the maximum support to T′ or we lower the upper bound of the support between T and T′. As

we have shown before, if all transitions that are included in the plan are fully supported, then

the partial-order schedule on r created from the posted support links represents a set of valid

schedules on r. Each valid schedule creates an evolution of r, where at each time point t, where

0 ≤ t ≤ H, the following condition is true: 0 ≤ level(r) ≤ H.

Our branching is related to an idea called chaining in the context of creating partial-order

schedules [42]. Chaining is a procedure that has been used to lift a resource feasible fixed time

schedule to a partial order schedule. The main idea behind chaining is to consider each multi-

capacity resource r with capacity(r) = m as m unit-capacity resources, and each resource

transition Tr on r as a set of unit-requirement transitions unit(Tr), where for each transition
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Figure 4.11: Example of Branching on Resources

T′r ∈ unit(Tr), req(T′) = 1 and |unit(T)| = req(T). For each transition Tr, all transitions in

unit(Tr) start at the same time and have as initial start time the start time from the fixed time

solution. After converting the problem as above, it solves the converted problem by posting

precedence constraints between the unit-requirement transitions on the unary resources.

One disadvantage of this way of branching is that we may have to make more search

decisions than the conflict-resolving approach. However, the extra decisions are easy decisions,

meaning these decisions will not lead to any dead end. This means that if we make enough

decisions on support links between transitions on a resource, such that the implied precedence

constraints guarantee that there is no peak and there is no possibility of a peak, then all other

decisions that we need to make are the decisions that can only affect the quality of a solution,

not the validity.

For example consider the scheduling problem described in Figure 4.11, where the problem

is to schedule 3 BORROW transitions T1 to T3 on a reusable resource r with capacity(r) = 4.

The top part of Figure 4.11 illustrates the initial situation, where start and end represents the

dummy start and end transitions on r. We assume that each transition T1, T2 and T3 require 2

units of resource, and can overlap among each other. The bottom part of the Figure 4.11 shows

a solution of the problem where all transitions’ demand is fully supported by support links. To

achieve this solution we have taken the following decisions (inclusion of support links):

D1 : support(start, T1) = 2

D2 : support(start, T2) = 2

D3 : support(T1, T3) = 2
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Other support links, support(T2, end) = 2 and support(T3, end) = 2 are inferred using

Inference 8 2, because T2 and T3 are the only possible supporter of end. If we use the two

step conflict-resolving approach, then we can see that the set {T1, T2, T3} creates a conflict,

because they can overlap and their total requirement is greater than the capacity of r. To

resolve the conflict we need to post a single precedence constraint between these transitions.

For example, if we post T1 → T2, then there is no more conflict to resolve. Compared to

this, our support-link based solution requires two additional decisions (decision D1 and D2)

to produce a solution. However, note that the extra decisions are easy. Because once we have

decided that support(T1, T3) = 2, there is no possibility to make the partial solution invalid.

The branching scheme that creates support links between resource transitions and cre-

ates causal links between state variable transitions provides a uniform decision making frame-

work for planning related variables (selecting causal links) and scheduling (decision on support

links). It also provides a way to develop inference techniques that not only consider the tran-

sitions that are included in the plan, but also consider the transitions whose inclusion status is

not yet decided.

4.6.2 Related Propagation Techniques

There are mainly two classes of propagation and inference techniques in the constraint-based

scheduling literature: techniques that consider absolute values of the temporal variables, and

techniques that consider precedence relations between resource events. In this section we first

relate our work with the first class of techniques and then we compare our work with the second

class of propagation techniques.

4.6.2.1 Propagation Based on Temporal Values

Classical constraint-based scheduling algorithms use propagation methods like Time Tabling,

Not-First/Not-Last, Edge-Finding etc, to infer bounds on temporal variables. These propa-

gation methods are based on reasoning about the absolute temporal values of the transitions.

The only inference rule that considers absolute temporal information to infer new precedence

relations is Inference 1(see page 84). This means that classical propagation techniques can be

used in conjunction with the propagation and inference techniques described in this chapter.

However, if the temporal variables have tight enough bounds, our inference rules can infer

the same bounds as these classical propagation techniques. For example consider a cumulative

scheduling scenario described by Vilim [53], where there are 4 transitions, A, B, C, and D that

must execute on a reusable resource r, with capacity(r) = 3. Transition A has req(A) = 3
and dur(A) = 1, transition B has req(B) = 1 and dur(B) = 3, transition C has req(C) = 2

2Inference 8 is a special case of Inference 6, that deduces lower bound on the transition start time based on the
PossSupp set, see page 92.
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and dur(C) = 2, and transition D has req(D) = 2 and dur(D) = 3. Transitions A and

D can start their execution at time point 0, i.e. lb(start(A)) = lb(start(D)) = 0, and

transitions B and C can start their execution only after time point 2, i.e. lb(start(B)) =

lb(start(C)) = 2. Transition A, B, and C must finish their execution before time point 5, i.e.

ub(end(A)) = ub(end(B)) = ub(end(C)) = 5. Propagation 20 3 updates the temporal

variables to the following values:

ub(start(A)) = 4 and lb(end(A)) = 1

ub(start(B)) = 2 and lb(end(B)) = 5

ub(start(C)) = 3 and lb(end(C)) = 4

ub(start(D)) = H − 3 and lb(end(D) = 3

Using Inference 1 4 we infer the following anti-precedence relations:

B 9 A , because lb(end(B))(5) > ub(start(A))(4)

B 9 C , because lb(end(B))(5) > ub(start(C))(3)

C 9 B , because lb(end(C))(4) > ub(start(B))(2)

D 9 B , because lb(end(D))(3) > ub(start(B))(2)

For the pair < A, B > the total requirement is greater than the capacity of the resource,

i.e. < A, B > is a mutex pair. Similarly, < A, C >, < A, D >, < C, D > are mutex

pairs. From Inference 4 5, we can deduce that A → B, because < A, B > is a mutex pair

and B 9 A holds. Since B is included in the plan, Propagation 15 6updates the latest end

time of A as ub(end(A)) = 2, and then Propagation 20 updates the latest start time of A
as ub(start(A)) = 1. Given ub(start(A)) = 1, Inference 1 deduces the following anti-

precedence relations:

C 9 A , because lb(end(C))(4) > ub(start(A))(1)

D 9 A , because lb(end(D))(3) > ub(start(A))(1)

Given these anti-precedence relations and the fact that both < A, C > and < A, D > are

mutex pairs, Inference 4 deduces that A → C and A → D. After posting A → D, the

earliest start time of D is 1 (via Propagation 15), and earliest end time of D is 4 (via Propaga-

tion 20). Given that < D, C > is a mutex pair, after Inference 1 deduces that D 9 C (because

3Propagation 20 implements the constraint start(T) + dur(T) = end(T), see page 81.
4Inference 1 infers anti-precedence constraints based on absolute values of temporal variables, see page 84.
5Inference 4 infers precedence constraints based on mutex relations, see page 86
6Propagation 15 implements the temporal constraint for an active precedence constraint, see page 80.
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lb(end(D))(4) > ub(start(C))(3)), Inference 4 deduces that C → D, which updates the

earliest start time of D to 4 (via Propagation 15).

The edge-finding algorithm for cumulative scheduling described by Vilim [53], also de-

duces that the earliest start time of D is 4. In addition to deducing that D can only start from

time point 4, we also deduce that A must execute before the set {B, C, D}. All these deduc-

tions are made even though we don’t know if A or D are included in the plan or not. This

means that even if A and D are optional, our propagation and inference techniques are able to

deduce that A must finish execution before B, C, and D (if included in the plan), and D can

only start at time point 4.

As we pointed out earlier, our propagation and inference techniques can perform deduction

as described in the example above if temporal constraints (release dates and deadlines) on

the transitions are tight enough. In general, however, there are situations where propagation

techniques like Edge-Finding and Not-First/Not-Last find better bounds than our inference

techniques.

4.6.2.2 Propagation Based on Precedence Relations

If temporal constraints are not tight enough (for example, most planning problems have a

large horizon value), classical propagation techniques (mainly based on absolute temporal in-

formation) fail to deduce much. To remedy this type of situation there are other propagation

techniques developed in the constraint-based scheduling literature that are based on the relative

position of transitions. In this section we show that our propagation and inference techniques

find better bounds than the precedence-based resource constraint propagation techniques de-

veloped by Laborie [36].

Laborie describes two main propagation techniques that infer bounds on temporal variables

of transitions: the Energy Precedence constraint that works on reusable resources, and the Bal-

ance constraint that can be applied to both reusable and reservoir resources. As we have shown

earlier, Inference 11 7(see Proposition 3 on page 102) always produces bounds on the start and

the end time of a transition that are as good as the bound produced by the Energy Precedence

constraint or better. In the following we discuss the applicability of the Balance constraint
with our branching scheme. This means that given our branching strategy we compare the

deduction capability of the Balance constraint with our inference techniques.

Intermediate Search State: Figure 4.12 shows an intermediate search state on a reservoir

resource r, where capacity(r) = 5, and initially it was empty, i.e. init(r) = 0. start and

startConsume represent the dummy start transition Tstart
r and the dummy start consume tran-

sition TStartConsume
r . There are 4 PRODUCE transitions:P1 that produces 2 units of resource,

7Inference 11 updates the start time of a transition based on the optimal schedule for the USB set of the transi-
tion, see page 100.
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Figure 4.12: Partial search state on a reservoir resource r

P2 is same as P1, P3 produces 1 unit of resource, and P4 produces 4 units of resource. Sim-

ilarly, C1 and C2 are two CONSUME transitions that consume 2 unit of resource each. All

transitions have duration of 2 time units. All transitions can start at time point 0 and must

finish before H. Since initial level was 0, we do not create the dummy start produce transition

TStartProduce
r . Initial propagation assigns support(start, startConsume) = 5 (Due to Con-

straint !21). In addition to this, the following decisions are made to reach the state described

in the Figure 4.12:

support(startConsume, P1) = 2

support(startConsume, P2) = 2

support(startConsume, P3) = 1

Note that < P1, P4 > and < P2, P4 > are mutex pairs, and FFS(P1) = 2 and FFS(P2) =
28. Given these information, Inference 5 9 deduces P1→ P4 and P2→ P4. Since P1 and P2
are included in the plan, these precedence constraints update the earliest start time of P4 to 2.

The solid edges between transitions in the Figure 4.12 represent the precedence relations, and

the dotted edges between transitions represent the support links.

Given this intermediate search state, where the earliest start time of P4 is 2, we first show

that the Balance constraint does not deduce any tighter bound on the start time of P4, while

our inference techniques based on the concept of possible supporters (see page 89) deduce the

8Note FFS stands for Flow From Source, and for a transition T section 4.3.3 (page 86) describes how to
calculate FFS(T).

9Inference 5 infers precedence constraints based on the calculation of FFS, see page 88
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lower bound on the start time of P4 to 4.

The propagation technique of the balance constraint is based on the resource envelope

calculation as described before. To infer the lower bound on the start time of P4 the Balance

constraint first calculates the resource envelope just before P4, i.e. [L(P4)<min, L(P4)<max],

which can be calculated as described in equations 4.64 and 4.65. Note that in this case B(P4)
is the set of transitions that must finish execution before P4, i.e. B(P4) = {P1, P2}, and

U(P4) is the set of transitions that are unordered w.r.t. P4, i.e. U(P4) = {P3, C1, C2}. Also

note that P(r) = {P1, P2, P3} and C(r) = {}, because P4, C1 and C2 are not yet included

in the plan. The calculations for the resource envelope as described earlier is based on resource

events. We adopt it for transitions as follows:

L(P4)<max =

(
∑

T′∈P(r)∩B(P4)
req(T′)− ∑

T′∈C(r)∩B(P4)
req(T′)

)
+ ∑

T′∈P(r)∩U(P4)
req(T′)

(4.66)

= 4− 0 + 0

= 4

L(P4)<min =

(
∑

T′∈P(r)∩B(P4)
req(T′)− ∑

T′∈C(r)∩B(P4)
req(T′)

)
− ∑

T′∈C(r)∩U(P4)
req(T′)

(4.67)

= 4− 0− 0

= 4

The resource envelope before the transition P4 is [4,4]. The Balance constraint propagates

time bound by analyzing the lower and upper bound of the envelope. If the lower bound is

negative then it means that some PRODUCE transition form the set U(P4) must be executed

before P4, and if the upper bound is greater than capacity(r) then it means some CONSUME

transition from the set U(P4) must be executed before P4. Since in the example described in

the Figure 4.12, the envelope is within 0 and capacity(r) = 5, the Balance constraint does

not deduce any tighter lower bound on the start time of P4.

The proposed inference techniques in this chapter for finding tighter bounds on temporal

variables of a transition are divided into two types: based on the possible supporter sets (see

Section 4.4.2 on page 94), and based on the set of transitions that must execute before the

transition (see Section 4.4.1 on page 88). This means that in the above example our inference

techniques not only consider what must happen before P4 but also the possible transitions that

can execute before P4 to update its bound on the start time. In this particular example since
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USB(P4) (see Definition 19 on page 94) is empty, we can not deduce any tighter bound using

Inference 11 10 as described in Section 4.4.2. We can deduce a better bounds on start time for

P4 by looking at the possible supporter sets for P4. Note that on a reservoir resource, only

CONSUME transitions can support a PRODUCE transition, and only PRODUCE transitions

can support a CONSUME transitions. In this example, the two CONSUME transitions, C1
and C2, have the same possible supporter set {P1, P2, P3, P4}. Inference 6 deduces that the

earliest start time for both C1 and C2 is 2. Propagation 20 propagates the end times of both

C1 and C2 to 4. Since C1 and C2 are the only possible supporters of P4, Inference 6 infers

the earliest start time of P4 to be 4.

Propagation based on Resource Envelopes There are few fundamental differences between

our resource inference techniques and envelope-based resource propagation techniques [26,

39]. First, our resource modeling is based on resource transitions which provides more in-

formation to the propagation techniques that infer temporal bounds and precedence relations

based on different support types. In our model a PRODUCE transition can only support CON-

SUME transitions and vice versa. This modeling technique for resource transitions helps to

infer better temporal and resource bounds. Consider the example given in Figure 4.12 and let

us assume that no support decisions have been made and all transitions are included in the plan.

Given this situation envelope-based propagation would detect that the given scenario is unsafe,

and more ordering constraints are needed, but can not deduce any time bounds on the transition

start times. Our support-based inference techniques will update the earliest start time of C1
and C2 to 2. This is because C1 and C2 can only be supported by the PRODUCE transitions.

Second, our branching choices provide more information than the usual PCP branching

used in envelope-based propagation. Branching decisions on resources not only imply the

precedence constraint, but also implies the fact is there can be no transition inbetween the

involved transitions that will share the support amount. This extra information helps the prop-

agation techniques to derive precedence constraints based on the support amount. Consider

the above example in Figure 4.12 where it is decided that P1 − P3 are in the plan and they

are supported by the dummy start transition, but P4, C1, and C2 are still undecided. Given

these decisions we have showed that our inference techniques derive the earliest start time for

P4 to 4. If we imagine all transitions are included in the plan, then given those three decisions

envelope-based propagation would only find out the need for more precedence orders but can

not find better temporal bounds.

The last difference is that envelope-based propagation techniques are based on a fixed set of

resource events, while we consider transitions that are included in the plan and the transitions

that are not yet excluded from the plan. For envelope-based propagation, we can deal with

optional activities in two different ways. The first is to consider what is included in the plan

10Inference 11 updates the lower bound of the start time based on USB set of a transition, see page 100.
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so far. Consider the example in Figure 4.12 again, and assume that we have not made any

decisions except that all PRODUCE transitions are included in the plan. In this case envelope-

propagation will find the state inconsistent, because the total production is larger than the

capacity. The second way is to include all optional tasks and reason with them as if they are

included in the plan. Consider an example with four PRODUCE transitions as in Figure 4.12,

and suppose there were five CONSUME transitions with 2 units of resource requirements each.

We know that all PRODUCE transitions are included in the plan, and no decisions have been

made for the CONSUME transitions. If we assume that all these CONSUME transitions are

also going to be part of the plan, then again envelope-based propagation will find the state

inconsistent because total consumption is greater than the total production. Our propagation

techniques handles optional activities naturally by considering how its resource requirement is

going to be supported and what must happen before it.

This natural inclusion of optional activities of our representation is important for the prob-

lems we want to solve, which are in between planning and scheduling. In these problems we

need to include actions (and transitions) in the plan in a step-by-step fashion. Our branch-

ing strategy keep tracks of how a transition provides support to other transition. Given this

branching strategy, our inference techniques reason about when a transition’s demand or pre-

condition can be satisfied. During the reasoning it not only considers what must happen on a

state variable or on a resource, it also considers what is still possible. This is why we believe

our branching scheme and inference techniques are useful for solving the problems that are in

between planning and scheduling.

4.7 Summary

In this chapter we have described how to solve the CSP that is generated from compilation pro-

cess described in the previous chapter. We have proposed a branching scheme that branches

on possible support to transitions. Each support implies a precedence constraint and inclusion

of corresponding actions into the plan, which is then propagated using the propagation rules

described in this chapter. We have described several inference technique that deduces temporal

bounds and new precedence constraints.

The solving technique that we have described here is complete chronological backtracking

search that finds a solution that satisfies all the constraints. For many practical problems find-

ing a satisfying solution is not enough, but require optimizing some aspect of the solution.

Commonly used optimization criteria are minimizing makespan, minimizing action costs etc.

Although we have not discussed any particular optimization technique in this thesis, our search

technique can be easily extended to support optimization criteria. One simple way to imple-

ment optimizing search method in our framework is to have bounds on the maximum end time
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of the dummy end action (minimizing makespan). We have showed that for solving project

scheduling problem [3] this method produced competitive result.

Many real world planning problems are usually very large in terms of available actions, state

variables and resources. In many cases these problems are solved using local search techniques

(not complete). One such successful technique is the large neighbourhood search (LNS) tech-

nique [44]. In LNS solutions are generated by a repetitive destruction and construction process.

Central to the LNS successs is the core constraint engine that checks constraint satisfaction of

any given solutions. The propagation and inference techniques described in this chapter can be

used for the construction step of an LNS search.
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Chapter 5

Modeling Operational Constraints

In the previous chapters we have shown how to present a planning and scheduling problem

using state variables, resources and actions (and transitions), and how to compile the problem

into the transition-based constraint formulation, where each solution to the constraint model

gives us a flexible solution plan. The transition-based constraint model ensures that each so-

lution represents a set of valid schedules on state variables and resources under the physical

constraints of these domain objects. By physical constraints we mean that on state variables

all transitions, except for the PREVAIL transitions that require same state, are totally ordered,

and on each resource r, at each time point 0 ≤ t ≤ H, the condition 0 ≤ level(r, t) ≤
capacity(r) holds.

We are interested in solving problems that are in between planning and scheduling prob-

lems. These problems generally have complex temporal constraints like release dates, dead-

lines, time-windows, sequence dependent setup times etc. We will refer to these constraints

collectively as operational constraints. In this chapter we will describe how we model these

operational constraints in our representation, and the additional constraints that we need to add

to handle these complexities in our constraint model. First we will describe how the setup times

are represented. Next we will describe the operational constraints on individual states of state

variables. Lastly we will show how time-window constraints are applied to state variables,

resources, and actions.

5.1 Modeling Setup Times

On a domain object 1, if two transitions have to be executed consecutively, then it may be the

case that the second transition can not start immediately after the first transition is finished,

some delay is needed in between the end of first transition and the start of second transition.

This time delay is called setup time or changeover time in the scheduling literature. Consider

a coloring machine in a factory that can paint an object with one of the three different colors:

red, green and blue, with the restriction that it can paint one object at a time. If there are two

1 By domain object we mean both state variables and resources in the model
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objects that need to be colored in two different colors, then before the machine can process

the second object, it needs to be cleaned so there is no color contamination. The duration of

the cleaning task is the Setup time between these two coloring tasks. If there are two objects

that need to be painted the same color, for example blue, then the machine doesn’t need any

cleaning operation in between them, so the Setup time between the tasks would be 0. This is

an example of sequence dependent setup time, because it depends on the order of the tasks. In

many cases, a domain object can also have a sequence independent setup time, i.e a constant

time delay, that must be applied between any pair of transitions on the domain object.

Although setup times are traditionally defined on reusable resources with capacity one, we

generalize the concept of setup time for both state variable transitions and resource transitions.

The advantage is that we can use the setup times on state variables to exclude inconsistent tran-

sition sequences by setting the time delay to infinity. In practice all setup times are triangular,

but the model does not require them to be. We will describe the use of setup times on state

variables later in the Case Study chapter.

5.1.1 Extending the Representation

In this section we describe the additional modeling elements for domain objects and transitions

that are needed to model setup times between transitions. Each domain object has a Setup
Matrix that has one or more Setup States. Each element in the setup matrix represents the time

needed to change from one setup state to another. For a domain object d, Setup(d) denotes

the setup matrix associated with d, and States(Setup(d)) denotes the set of setup states of the

setup matrix. Given a Setup(d) where s1, s2 ∈ States(Setup(d)), notation Setup(s1, s2)

denotes the value of the element s1s2 in the matrix. Table 5.1 describes an example setup

matrix that represents the time delay between different coloring actions. It has three colors

as setup states: Red, Blue, and Green. Since each element in a setup matrix represents time

Red Blue Green
Red 0 10 15
Blue 20 0 30

Green 30 20 0

Table 5.1: Setup Matrix for colors

delays, all elements are non-negative integer values. Note that setup times between same setup

states are set to 0.

For each transition T in our model we assign two setup states: FromSetupState(T) and

ToSetupState(T). The FromSetupState(T) denotes the setup state needed when T starts

execution, and the ToSetupState(T) denotes the setup state that results when T finishes its
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execution on obj(T). Note that for each transition T,

FromSetupState(T) ∈ States(Setup(obj(T)))

ToSetupState(T) ∈ States(Setup(obj(T)))

Let Setup(T, T′) represent the time delay that is needed if T′ executes right after T. Recall

that a pair of transitions < T, T′ > can execute consecutively, if it is a support-relevant pair or

a achieve-relevant pair or a can-follow pair 2. The value of Setup(T, T′) is defined as follows:

Setup(T, T′) = 0 if < T, T′ > is neither a support- nor achieve-relevant nor can-follow pair

= Setup(ToSetupState(T), FromSetupState(T′)) otherwise

In our representation we define a setup time matrix for each domain object. If setup times are

not defined for a domain object, then its setup matrix has only one default setup state, and all

transitions that need to execute on the domain object have same setup state. This means that

for each pair of transitions < T, T′ > on the domain object Setup(T, T′) = 0.

Note that our treatment of setup states for each transition is different from traditional use

of the setup matrix. Traditionally, each activity has only one setup state. For example, for

the coloring machine mentioned above, each coloring requirement would have only one setup

state, the required color. This can be modeled in our representation by providing the same setup

state for both FromSetupState(T) and ToSetupState(T). Having two setup state become

useful to exclude inconsistent sequence of transitions on a domain object. We will discuss such

examples in the next chapter.

5.1.2 Extending the Constraint Model

Since setup times are defined between two consecutive transitions executing on a domain ob-

ject, we introduce the following 3 constraints into our constraint model:

Constraint 23. For a resource r, for all support-relevant pairs < Tr, T′r >∈ SUP(r) the

following constraint holds

support(Tr, T′r)) > 0⇒ start(T′r) ≥ end(Tr) + Setup(Tr, T′r) (5.1)

Constraint 24. For a state variable sv, for all achieve-relevant pairs < Tsv, T′sv >∈ AC(sv)
the following constraint holds

achieve(Tsv, T′sv)) = 1⇒ start(T′sv) ≥ end(Tsv) + Setup(Tsv, T′sv) (5.2)

2Definitions of these pairs are given in Section 3.4.2 on page 51.
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Constraint 25. For a state variable sv, for all can-follow pairs < Tp
sv, T′sv >∈ FL(sv) the

following constraint holds

follow(Tp
sv, T′sv)) = 1⇒ start(T′sv) ≥ end(Tp

sv) + Setup(Tp
sv, T′sv) (5.3)

5.1.3 Extending Inference Rules

Using the setup time information we can infer bounds on the start and end times of transitions.

Here we only show how we use setup information to get tighter lower bound on the start times.

Similar technique can be used to infere tighter upper bound on the end times.

Let minSetup(T) represent the minimum amount of time delay that is needed before T
executes on the domain object obj(T). minSetup(T) can be calculated as the following:

• If T is a resource transition, then

minSetup(T) = min
T′∈PossSupp(T)

Setup(T′, T) (5.4)

Where PossSupp(T) is the possible supporter set 3 of T.

• If T is a state variable transition, then

minSetup(T) = min
T′∈PossAchiev(T)

Setup(T′, T) (5.5)

where PossAchiev(T) is the possible achievers set 4 of T.

Given minSetup(T), we can apply the following inference rules for resource transitions

and state variable transitions respectively. Since minSetup(T) ≥ 0, these new inference rules

provides better lower bounds on the start times than the inference rule 6 and 9 5.

Inference 16. For each resource transition Tr, such that Tr is not excluded from the plan,

start(Tr) ≥ get eft (PossSupp(Tr)) + minSetup(Tr) (5.6)

Inference 17. For each state variable transition Tsv, such that Tr is not excluded from the

plan:

start(Tsv) ≥ min
T′sv∈PossAchiev(Tsv)

eft(T′sv) + Setup(T′, T) (5.7)

3Possible supporter set of a transition is described in Section 4.4.1.1 (page 89)
4Possible Achiever set of a transition is described in Section 4.4.1.2 (page 93)
5These inferece rules are defined in the Section 4.4.1 (page 88)
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5.2 State Variable State-Constraints

There are some temporal features or constraints that are quite common in many realistic prob-

lems, such as time windows, deadlines, release date etc. For example, in a pickup and delivery

problem packages can have time windows during which they can be picked up and can be de-

livered. In many scheduling models these constraints are directly modeled by posting temporal

constraint on related actions’ start and end times.

In our representation, we model these temporal features as constraints on states of state

variables. For each state variable sv, we define 4 constraints for each state s ∈ dom(sv):

• achieve a f ter(s, sv, t): This constraint represents that within the horizon [0, H], state

variable sv is allowed to change to the state s from another state only after time point t.
A schedule on sv is valid if there does not exist a pair of time points < t′, t′′ >, where

t′ < t′′ < t, such that the following constraint holds:

state(sv, t′) 6= s ∧ state(sv, t′′) = s (5.8)

This means that each EFFECT transition TE
sv ( 6= Tstart

sv ), that can change the state of sv
to s, i.e. post(TE

sv) = s, must finish its execution after t.

• achieve be f ore(s, sv, t): This constraint represents that within the horizon [0, H], state

variable sv can change to the state s from another state s′ only before time point t. In

each valid schedule of sv there does not exist a pair of time points < t′, t′′ >, where

t < t′ < t′′, such that the following constraint holds:

state(sv, t′) 6= s ∧ state(sv, t′′) = s (5.9)

This means that each EFFECT transition TE
sv that can change the state of sv to s, i.e.

post(TE
sv) = s, must can finish its execution before t.

• change a f ter(s, sv, t): This constraint represents that within the horizon [0, H], state

variable sv is allowed to change to another state s′ from state s only after time point t.
A schedule on sv is valid only if there does not exist a pair of time points < t′, t′′ >,

where t′ < t′′ < t, such that the following constraint holds:

state(sv, t′) = s ∧ state(sv, t′′) 6= s (5.10)

This means that each EFFECT transition TE
sv ( 6= Tend

sv ), that can change state of sv from

s to another state, i.e. pre(TE
sv) = s, must start its execution after t.

• change be f ore(s, sv, t): This constraint represents that within the horizon [0, H], state

variable sv can change to a state s′ from state s only before time point t. In each valid
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schedule of sv there does not exist a pair of time points < t′, t′′ >, where t < t′ < t′′,
such that the following constraint holds:

state(sv, t′) = s ∧ state(sv, t′′) 6= s (5.11)

This means that there each EFFECT transition TE
sv, that can change state of sv from s to

another state, i.e. pre(TE
sv) = s, must start its execution before t.

Effectively these constraints allows us to model time windows on each possible state of a state

variable. For example, loc pkg denote a state variable that models the current location of a

package, that has dom(loc pkg) = {pick, goal}, where pick represents the pickup location

and goal represent the delivery location of the package. Let [tmin
p , tmax

p ] be the time window

within which the package can be picked up at the pickup location, and [tmin
g , tmax

g ] be the time

window when it must be delivered to the goal location. To model these time windows we

define the following constraints on the states of the state variable loc pkg.

• change a f ter(pick, tmin
p ) and change be f ore(pick, tmax

p ) to model the time windows

on the pickup location.

• achieve a f ter(goal, tmin
g ) and achieve be f ore(goal, tmax

g ) to model the time window on

the goal location.

The above state-constraints let us model absolute temporal constraints, i.e. time-windows

on a state. Although time-windows on a state is a common operational constraint, there are

other constraints that constrain the occurrence of the state in a relative manner. For example

consider a state variable that represents the work cycle of a robot as described in Figure 5.2

It has four states, Idle, Working, Cooling, and Shutdown, where Idle is the initial state and

Shutdown is the goal state. Constraints on the states are the following:

• When the robot is in the Working state, it must stay in that state for at least 5 min and at

most 30 min.

• The maximum number of times that a robot can be cooled is 6.

• Each cooling cycle takes at least 10 min, and robot is not allowed to stay in the Cooling

state more than 15 min.

These constraints are relative temporal constraints, meaning they don’t specify any particular

time points, but constrain the state variables’ evolution based on time points within the horizon.

To model this type of restrictions we define the following two state-constraints.

• achieve(s, sv, min, max): This constraint represents that for the state variable sv, the

state s must be achieved at least min number of times and at most max number of times.
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Figure 5.1: State Variable: Robot Work Cycle

We say a time point t is a s-achieving time point, if state(sv, t) = s, and either t = 0 or

state(sv, t− 1) 6= s. This constraint implies that the number of such s-achieving time

points within the horizon [0,H] is bounded by the interval [min, max].

• persist(s, sv, min, max): This constraint represents that for the state variable sv, the

state s when achieved, must not be changed to other state until min amount of time has

elapsed, and must be changed to other state after max amount time has elapsed. This

means that for each pair of time points < t, t′ > within the horizon [0,H] where the state

of sv is s, the duration (t′ − t) is bounded by the interval [min, max].

We can satisfy the additional requirements on our example Robot Work Cycle state variable, as

described above, by posting the following three state-constraints: two persistent constraints on

states Working and Cooling, and a achievement constraint on the state Cooling.

To include these constraints on states of state variables, we extend the constraint model as

described below.

5.2.1 Extending the Constraint Model

As defined above, each constraint on a state s of a state variable sv effectively restricts when

an EFFECT transition TE
sv, related to s by pre- or post-condition, can start or finish. For each

state s of a state variable sv, let achieve(s, sv) denote a set of EFFECT transitions on sv, such

that ∀T ∈ achieve(s, sv), post(T) = s. Similarly let change(s, sv) denote a set of EFFECT

transitions on sv, where ∀T ∈ change(s, sv), pre(T) = s.

The following temporal constraints represents the implementation of the time-window con-

straints on an individual state of a state variable.
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Constraint 26. For each state variable sv, for each state s ∈ dom(sv), the following tempo-

ral constraints must be satisfied.

achieve a f ter(s, sv, t) is defined ⇒∀T ∈ achieve(s, sv) :

end(T) ≥ t (5.12)

achieve be f ore(s, sv, t) is defined ⇒∀T ∈ achieve(s, sv) :

end(T) ≤ t (5.13)

change a f ter(s, sv, t) is defined ⇒∀T ∈ change(s, sv) :

start(T) ≥ t (5.14)

change be f ore(s, sv, t) is defined ⇒∀T ∈ change(s, sv) :

start(T) ≤ t (5.15)

The constraint achieve(s, sv, min, max) implies a counter that counts the number of transi-

tions that achieve the state s, and min and max represents the minimum and maximum number

of such transitions. For each state variable sv, and for each state s, the following constraint

implements the counter constraint for achieve(s, sv, min, max)

Constraint 27. For each state variable sv, and for each state s, if achieve(s, sv, min, max) is

defined, then the number of s-achieving transitions included in the plan must be bounded by

min and max.

min ≤ ∑
∀T∈achieve(s,sv)

inplan(T) ≤ max (5.16)

The persistent constraint persist(s, sv, min, max) defines a min and a max time delay be-

tween a achieve-event and a following change-event on the state s. Each achieve(Tsv, T′sv)

variable, where Tsv ∈ achieve(s, v) and T′sv ∈ change(s, sv), represents such an achieve-

change event pair. In our constraint model each persistent constraint is modeled as the follow-

ing temporal constraints.

Constraint 28. For a state variable sv where persist(s, sv, min, max) is defined, if an achieve

variable achieve(Tsv, T′sv), where Tsv ∈ achieve(s, v) and T′sv ∈ change(s, sv) is selected ,

then the difference between start(T′sv) and end(Tsv) must be bounded by min and max

achieve(Tsv, T′sv) = 1⇒min ≤ start(T′sv)− end(Tsv) ≤ max (5.17)
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5.3 Time-Windows on State Variables, Resources, Actions

In the above section we have described how to model a time-window constraint associated with

a particular state of a state variable. In this section we introduce time-window constraints on

the evolution of state variables and resources, and on action executions. For example consider

the state variable representing status of a working robot above. If the robot is only available

during a time-window then we can model that feature by specifying a time-window on the

state variable. Similarly a time-window on a resource represents the temporal availability of

the resource. Time-windows on actions are the most commonly occurring constraint in many

real problems. For example, in a satellite domain taking a picture of a target is constrained by

the time-windows describing the visibility of the observation for the satellite.

5.3.1 Extending Representation

For a domain object d we define a time-window as time− window(d, tstart, tend). This con-

straint represents that the evolution of the domain object d is restricted within the time starting

at tstart and ending at tend. This means that the domain object d will have the same state or

resource level as its initial configuration until tstart, and the state or resource level at the time

point tend will continue to persist until the end of the planning horizon H. Given a time-window

the conditions on the evolution of a state variable sv are the following:

∀t ∈ [0, tstart) : state(sv, t) = init(sv) (5.18)

∀t′ ∈ (tend, H] : state(sv, t′) = state(sv, tend) (5.19)

Similar constraints hold for the evolution of a resource r

∀t ∈ [0, tstart) : level(r, t) = init(r) (5.20)

∀t′ ∈ (tend, H] : level(r, t′) = level(r, tend) (5.21)

Similar to the domain object, time−window(a, tstart, tend) denotes a time-window constraint

for an action a. The meaning of a time-window on an action is simple: each transition of the

action must not start before tstart and must not end after tend.

5.3.2 Extending Constraint Model

Since only transitions are responsible for changing states of state variables and levels of re-

sources, these temporal constraints limit the execution of the transitions within the time-

window. We implement the following constraint on each transition T, where T is not the

dummy start or dummy end transition on the domain object d:
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Constraint 29. For each domain object d, given a time-window constraint (tstart, tend), each

transition T on d (e.i obj(T) = d), where T is not the dummy start or the dummy end transition

on d, must starts after tstart and must ends before tend.

start(T) ≥ tstart and end(T) ≤ tend (5.22)

For an action a, a time-window constraint simply translates to temporal constraints on the

start and end variables of its transitions as mentioned before.

Constraint 30. For each action a, given a time-window constraint (tstart, tend), each transition

T of a, can not start before tstart and can not end after tend. This means for each T, where

act(T) = a, the following temporal constraints hold

tstart ≤ start(T) (5.23)

end(T) ≤ tend (5.24)

5.4 Other constraints

There are other constraints that appear in practical planning and scheduling problems fre-

quently other than time-window and setup time constraints, such as: disjunctive time windows

on goal, inclusion of action based on inclusion/exclusion of other actions etc. In this section

we briefly describe how these constraints can be modeled in transition-based representation.

5.4.1 Disjunctive goal constraint

The disjunctive goal constraint describe the fact that a goal can be achieved only in one of

the possible time windows. In our representation achieving goal is being on the goal state.

This constraint can be modeled using state variable state time window constraints as described

above. For each possible time windows, we create a copy of the goal state with the corre-

sponding time-window constraint, and create extra copies of the actions that either use the

state, achieve the state or change the state.

5.4.2 Action exclusion and implication constraints

In many practical planning application it is necessary to express action exclusion and impli-

cation constraints. An action exclusion constraint Exclusive(a, b) means that at most of one

of actions a and b can be in the plan. This can be modeled with a unary reservoir resource

consumed by both actions. An action implication constraint Imply(a, b) means that if action

a is included in the plan then action b must be included. We can model action implication

constraint between a pair of actions by creating a special state variable for each implication.
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Figure 5.4.2 describes the state variable for the action implication constraint between action a

Figure 5.2: Action implication state variable

and b. The bold edges represent the transitions for real action a and b. All other edges rep-

resent transitions of dummy actions the we need to create for this special state variable. The

“ImplicationStart” state represent the initial state and the “ImplicationDone” state represents

the goal state for the state variable. If action a becomes active (that is included in the plan)

then the path between the initial and goal state of the state variable must contain the transition

of action b. Note that in normal state variables of a transition supports another transition then it

implies a precedence constraint between the transitions. If the precedence constraints holds in

this state variable then it would mean that Imply(a, b) can only hold if a→ b holds. To avoid

that, for each state variable that represents an implication constraint, the precedence constraints

between transitions will be ignored.

5.5 Summary

In this chapter we have described how to model sequence dependent setup times, time-windows

(which generalizes the release date and deadline constraints) on domain objects and actions,

and constraints (counter and time-windows) on individual states of state variables. These op-

erational constraints are very common in problems that lie between planning and scheduling

problems. As we have shown above, describing these constraints in our problem description

framework is straightforward and intuitive. Compiling these constraints from the model to

our transition-based constraint model is also simple, since these constraints translate to a set
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of simple temporal and counting constraints. We will describe modeling of a problem that

includes many of these operational constraints in the next chapter.



Chapter 6

Case Study

In this chapter we will describe how to model a realistic planning and scheduling problem in

our transition-based framework as described in the previous chapters. In this thesis we have

proposed a framework for modeling and solving problems that are in between planning and

scheduling. There are many realistic problems across different industries that fall into this

category. Examples of such problems can be found in space applications, factory production,

and supply chain problems in different industries.

In this chapter we choose one such problem and show how to model this problem in our

framework. The purpose of this chapter is to show how realistic problems can be intuitively

modeled easily in the framework, which then is compiled to a standard CSP.

6.1 Description of the complex satellite domain

Fleets of Earth-observing satellites are used for a variety of purposes: to observe weather, track

movements on land and at sea, monitor climate change and volcanic eruptions, and many more.

These satellites make observations and send information to the earth via ground stations. For a

satellite to perform an observation a sequence of tasks need to be performed: first the satellite

needs to turn one of its instrument towards the observation target, then make the observation,

and then download the observed data to a ground station located on Earth. There are predefined

time windows when a satellite can make an observation or download the data to a ground sta-

tion based on the flight path of the satellite. Limited data storage capacity and power onboard

each satellite restrict its capacity to make observations.

A simplified version of this type of space-related application problem has been used to cre-

ate the well known ’Satellite’ planning domain, used in planning competitions. The problem

that we would like to model in our formalism is a more complex version (though, still simpli-

fied from the real problem) of the satellite domain as described by David Smith via personal

communication. We have chosen the satellite problem because of its familiarity in the AI plan-

ning and scheduling community, and have wide range of interesting constraints. We will show

that our representation can express most of the complexities in the satellite problem.

133
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The main task of the set of Earth observing satellites is to take pictures of a given set of

targets. In general, to take a picture of a target, a satellite performs a sequence of actions: first

it turns one of its instruments that is suitable for taking the picture to the target location, then

it takes the picture and stores it in its on-board memory. Each picture taken by a satellite needs

to be downlinked from on-board memory to a ground station. Similar to the picture-taking

action sequence a satellite performs two steps to downlink the stored data: first it turns one of

its antennas to the ground station’s location, and then it downlinks the data.

The simple task of taking a picture by a satellite becomes complex when we consider the

following factors. During the picture-taking operation, the target must be visible to the satellite

instrument. For each satellite, each target is only visible within a set of time windows (when

satellite is flying over or near the target). Only a select set of instruments on a satellite can

be used for a given target, and depending on which instrument is used it may take a different

amount of time to turn the instrument to the target, as each instrument on a satellite has its

own turning rate. In general, a satellite can use more than one instrument to take pictures of

different targets at the same time (provided they are all visible to the satellite at the same time),

but some instruments can’t be used simultaneously due to their design.

Similarly, the downlinking actions are complicated by the following facts. For each satel-

lite, each ground station is only visible within a set of time windows. Each ground station

operates in a set of predefined frequency bands, and each antenna on a satellite has its own

frequency. This means that not every antenna can be used to download data to every ground

station. To downlink data, the ground station must be visible and the frequency of the antenna

must be compatible with the ground station’s frequencies. Also, each antenna on a satellite has

its own data transfer rate which defines the total duration needed to downlink a picture using

that antenna. Before a downlink operation can begin, the antenna for the operation must turn

to the ground station. Similar to the instruments, the duration of a turning action depends on

the turning rate of the antenna.

In addition to the constraints above, there are other operational constraints that must be

taken into account by the satellites while performing picture taking or downlink actions. We

describe some of these constraints in the following. Both picture-taking and downlinking

actions must be preceded by a turning action of either an instrument or antenna. These turning

actions produce vibration, and because of that, picture-taking and turning actions can not be

performed concurrently. The on-board memory of each satellite is a finite capacity solid state

recorder (SSR). One of the main constraints of the SSR is that data can only be read or written

on it at any point in time. This means that picture-taking and downlinking actions can’t be

performed simultaneously. Each action in this problem domain: turning, downlinking, or

picture-taking consumes power. Each satellite has a finite capacity power source that can be

only be recharged during predefined time windows when the satellite is in the view of the sun.

The satellite problem described above is in the class of problems that are in between plan-
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ning and scheduling. Here, planning decision are which instruments to use for observations,

and in which order, while this ordering must satisfy the resource and temporal constraints. In

this chapter we will model this problem in the transition-based formulation.

6.2 Model: Satellite Domain

In this section we will describe how to model the satellite domain described in the previous

section. First we will give an overview of the actions that need to be modeled. Then we will

describe the state variables and the resources in the model, and last we will present the detailed

model of the actions and their transitions.

In this case study we represent each user request as an observation. Each observation is a

request for a particular type of picture of a target. Each type of picture can be taken by a set

of instruments. Each observation in our model is associated with a target and a set of possible

instruments. Only one such instrument will be used to take the picture of the target.

Each target and ground station has a physical location on the earth.

6.2.1 Overview of Actions

We will model the following actions:

1. TurnInstrument(Inst, TargetFrom, TargetTo): This action turns an instrument to-

wards the TargetTo location from the TargetFrom location. The duration of this action is

the slewing time between TargetFrom and TargetTo. During a TurnInstrument action the

instrument can’t take any other picture or be involved in any other turning action. Since

any turning action generates vibration, no other instruments on the same satellite can

take any picture while this action is executing. After this action is finished executing,

the instrument is pointing to the TargetTo location. By pointing we mean that the instru-

ment is configured to point to the physical location of the TargetTo when it is visible to

the satellite.

2. TakePic(Inst, Target): This action takes a picture of the target using the instrument. The

duration of this action depends on the target and the instrument. The instrument must be

pointing to the target before the picture can be taken. While executing, this action stores

the picture of the target in the SSR of the corresponding satellite. Note that although the

turning of the instrument towards the target can happen any time, a picture-taking action

can only be executed during one of the time intervals where the target is visible to the

satellite.

3. TurnAntenna(Antenna, GSFrom, GSTo): Similar to the TurnInstrument action, this
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action turns an antenna from GSFrom to GSTo 1. The duration of this action depends

on the slewing angle between the GSFrom and GSTo. After executing this action, the

antenna points to the location of GSTo. Similar to the TurnInstrument actions, by point-

ing we mean that the antenna is configured to point to the physical location of the GSTo

when it is visible to the satellite.

4. Downlink(Antenna, GS, Observation): The Downlink action downloads the obser-

vation data stored in the satellite’s SSR to the ground station using the antenna. The

duration of this action depends on the size of the picture and the transfer rate of the an-

tenna. Before downlinking can begin, the antenna must be pointing towards the ground

station. Similar to the TakePic action, this action can only be executed when the ground

station is visible to the satellite.

5. SwitchON(Inst): Each instruments can only be switched on for limited amount of time.

After that it must to be switched off before it can be switched on again. This action

represent switching on an instrument. We will assume that the process of switching

on is not instantaneous, it takes some time before the instrument can be used to take a

picture.

6. SwitchOFF(Inst): Similar to the SwitchON action, this action represents the process

of switching off the instrument. We will assume that it takes some time to completely

switch off an instrument.

7. Recharge(Satellite, SunTimeWindow): Each Satellite has a battery. Each action de-

scribed above consumes a fixed amount of power from this battery. The only way to

recharge this battery is via solar power. The sun is only visible to the satellite during

certain time windows. We will call such intervals SunTimeWindows. We will assume

that recharge rates are same for each Satellite-SunTimeWindow pair. Each recharge-rate

is represented as p/t, where p is the amount of power and t is the unit of time.

We create recharge actions for such time intervals, where each action recharges the bat-

tery with p amount of energy and takes t amount of time. The number of recharge actions

for each Satellite-SunTimeWindow pair depends on the length of the SunTimeWindow

interval. If length of the SunTimeWindow is l, then we will create (l/t) number of

recharge actions.

All these actions are constrained to be executed within the time window. For example,

let’s assume that from 9am to 9:30am the Sun will be visible to a satellite. If the rate

of recharging is 2 units per minute, then we will create 30 recharge actions, where each

recharge action produces 2 units of power and executes for a minute. Each of these

1 GS stands for ground station.
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recharge actions’ earliest start time is 9am and latest finish time is 9:30am. Note that

none of these recharge actions for a Satellite-SunTimeWindow pair can overlap with

each other, because each recharge action represents the rate of recharging.

6.2.2 State Variables

We will model the following state variables:

1. Observation Status(Oi): For each observation Oi, we create a this state variable that

represents the different state that the observation can be in. Each observation state vari-

able has 3 different states: Not taken, Stored, and Downloaded. The state Not taken

represents the initial state of the observation where no decision has been made on which

instrument will be used. The TakePic action changes the Not taken state to the Stored

state. When an observation is in the Stored state, this means that a picture for the obser-

vation has been taken and it is stored in the SSR of the satellite. The following figure

shows the state/transition graph of this state variable.

A Downlink action then changes the Stored state to the Downloaded state by download-

ing the picture to a ground station. For each observation, the Downloaded state is the

final or goal state. This means that this state variable is a goal state variable.

Alternative Modeling As an Oversubscribed Problem:
In our problem we represent each Observation Status as a goal state variable. A solution

to this problem will successfully achieve all observations. We will say an observation is

achieved, when it is downloaded to a ground station. In reality, for a given planning hori-

zon, there are more observation requests than the optimal number of observations that

can be achieved within the planning horizon. This means that a planner should choose if

it wants to achieve an observation or not. This type of problems are called oversubscribed
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planning problems. We can model a oversubscribed version of the satellite domain by

not specifying any goal state for the Observarion Status state variables, and make the

Stored state a non-final state. This means that the Observation Status becomes a non-
goal state variable, and its evolution is not allowed to end at the Stored state. Since the

only way to get to the Downloaded state is via Stored state, Observation Status variable

will always end its evolution on either at the Not taken state (observation is not achieved)

or at the Downloaded state (observation is achieved). Oversubscribed problems are es-

sentially optimization problems. For this particular example the goal would be to achieve

the maximum number of observations. This can be modeled in our constraint model by

putting additional constraints (counting constraints) on the number of Downlink actions

included in the plan.

2. Antenna Direction(Ai): For each antenna Ai in the domain we create this state vari-

able that describes the status of the antenna. Each antenna state variable has two states:

Ready to turn and Pointing to GS. The first state describes that the antenna is free and

can be turned to any direction. The second state represents that the antenna is pointing

towards a ground station. Each TurnAntenna action changes this state variable’s state

to Pointing to GS. The Pointing to GS state is need by any Downlink action using this

Antenna during its execution. Our model has a dummy zero duration action DonePoint-

ing(Antenna, GS) that causes an instantaneous change of state from Pointing to GS to

Ready to turn. The following figure describes the state/transition graph of this state

variable.

For each state variable a solution represents a path from the initial state to the goal state

in the state transition graph, where the path is a sequence of actions. For this state vari-

able, each such path consists of instances of TurnAntenna, Downlink, and DonePointing

actions. Let’s consider an example of such a sequence as the following:

TurnAntenna(A,B,C)→ Downlink(A,D,O)→ DonePointing(A,E)→ TurnAntenna(A,D,E)
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where A is the antenna, O is an observation, and B, C, D, and E are ground station

locations.

If we look at the state variable in isolation, then the above sequence represents a solution

(or part of it). But it doesn’t represent a valid solution, because the antenna A was turned

from B to C, the observation O was downlinked to D, then its state was changed to

Ready to turn state from E and then it was turned from location D to E. A valid solution

would be one where sequential changes in locations are consistent. For example, the

following sequence represents a valid solution:

TurnAntenna(A,B,C)→ Downlink(A,C,O)→ DonePointing(A,C)→ TurnAntenna(A,C,E)

An additional constraint is needed to make sure that for antenna the changes in locations

that the antenna is pointing to are consistent.

To make sure that changes in the pointing direction of each antenna is valid we add a

setup matrix to the state variable 2, where setup states are the ground station locations.

Table 2 describes a part of the setup matrix with the setup states for the ground station

locations B, C, D, and E. The time delay between the same setup states (a pair of ground

B C D E
B 0 inf inf inf
C inf 0 inf inf
D inf inf 0 inf
E inf inf inf 0

Table 6.1: Setup Matrix for Antenna Direction(Ai)

stations) is zero and for all other cases, it is set to infinity.

Actions TurnAntenna(A, B, C), Downlink(A,C,O), DonePointing(A,C), and TurnAntenna(A,

C, E) each has a state variable transition on the state variable Antenna Direction(Ai).

Recall that in our model each transition has two setup states: a FromSetupState and a

ToSetupState. The following table describes the setup states of the transitions in our

example.

With these setup times, the (sub)sequence like the following:

TurnAntenna(A, B, C)→ Downlink(A,D,O)→ DonePointing(A,E)→ TurnAntenna(A,D,E)

will be excluded from the solution because the actions’ start and end times will violate

other temporal constraints such as time windows and plan horizon.

2Setup matrix representation and related constraints are described in the previous chapter
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Transitions FromSetupState ToSetupState
TurnAntenna(A, B, C) B C
Downlink(A,C,O) C C
DonePointing(A,C) C C
TurnAntenna(A, C, E) C E

Table 6.2: Setup states of the transitions on Antenna Direction(Ai)

3. Instrument Direction(Ii): For each instrument Ii we create this state variable which

is exactly same as the Antenna state variable described above, except that this state

variable describes the states of an Instrument, and each instrument points towards a

target. The TurnInstrument action changes the state of this state variable to the state

Pointing to target, and TakePic action uses the state during its execution. The following

picture describes state variable states and how actions can change from one state to other.

Note that the problem of possible inconsistent change in pointing location of an antenna

can also happen for an instrument. To avoid it, we will use a similar setup matrix for

this state variable as we used for antenna state variables. The setup states of this setup

matrix are the target locations.

4. Instrument Status(ISi): Each instrument must be switched on before it can be used

to take pictures. We create this state variable for each instrument with two states: ON

and OFF. Each SwitchON action changes the state OFF to ON, and each SwitchOFF

action changes the state ON to OFF. Each TakePic action needs the state ON during its

execution. We assume at the beginning of the planning and at the end of the planning all

instruments will be switched off. This means that the state OFF is both the initial and

final state for this state variable.
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Each instrument has additional constraints that state that the instrument can be switched

on at a strech MAXON(ISi) units of time, and when its switched off, it must stay off

at least MINOFF(ISi) units of time 3. We model these constraints using the following

two state-persistence constraints (as defined in the previous chapter):

• persist(Instrument Status(ISi), ON, 0, MAXON(ISi))

• persist(Instrument Status(ISi), OFF, MINOFF(ISi), inf)

Here inf represents an unbounded amount of time.

Note that in our formulation, each action can be used at most once in the plan. We

will add multiple copies of SwitchON and SwitchOFF actions to represent the fact that

within the planning horizon an instrument can be switched off or switched on multiple

times. This modeling technique introduces some symmetry, because all these copies of

SwitchON and SwitchOFF actions are equivalent. For example, if we added two copies

of SwitchON and SwitchOFF actions in the model, then the following sequences are

possible:

SwitchON1 → SwitchOFF1 → SwitchON2 → SwitchOFF2 (6.1)

SwitchON2 → SwitchOFF2 → SwitchON1 → SwitchOFF1 (6.2)

SwitchON1 → SwitchOFF2 → SwitchON2 → SwitchOFF1 (6.3)

SwitchON2 → SwitchOFF1 → SwitchON1 → SwitchOFF2 (6.4)

All four sequences above are valid but equivalent. This kind of symmetry may degrade

the performance of the backtracking search, because it creates unnecessary choices.

We can remove this symmetry using a setup matrix with this state variable. By removing

symmetry we mean making all the equivalent (sub)sequences of actions invalid except

for one (the first one in our example (eq 6.1)). The setup states of this setup matrix

3Here MAXON(ISi) and MINOFF(ISi) are integer values
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Transitions FromSetupState ToSetupState
SwitchON 1 SwitchON1 SwitchON1
SwitchON 2 SwitchON2 SwitchON2
SwitchOFF 1 SwitchOFF1 SwitchOFF1
SwitchOFF 2 SwitchOFF2 SwitchOFF2

Table 6.3: Setup states of the transitions on Instrument Status(ISi)

are the SwitchON and SwitchOFF action names, and each setup state pair describes the

changeover time between the action pairs as described in the following table.

SwitchON1 SwitchOFF1 SwitchON2 SwitchOFF2

SwitchON1 inf 0 inf inf

SwitchOFF1 inf inf 0 inf

SwitchON2 inf inf inf 0

SwitchOFF2 inf inf inf inf

Each transition on this state variable has FromSetupState and ToSetupState defined

as its action’s name. The following table describes the setup states of the transitions.

Using this setup matrix, all sequences, except for the first sequence described above

(eq 6.1, become inconsistent. Note that the purpose of the setup matrix used here is

different from the purpose it served in the Instrument Direction and Antenna Direction

state variables. There the setup matrix is used to remove inconsistent sequences, and

here it helps us to remove symmetry.

5. Satellite Mode(Si): Recall that each turning action, either turning an antenna or an

instrument, creates vibration in the satellite. Because of this vibrating effect, no picture-

taking action can be executed on the satellite while any turning action is executing. This

means that each satellite can be either in stable mode or in vibrating mode. When a

turning (either of an antenna or an instrument) action is executing on-board, we will

say that the satellite is in the vibrating mode, and in all other times we will say that

the satellite is in the stable mode. Each TakePic action can only be executed when the

satellite is in stable mode. This means that on a satellite any turning action can’t overlap

with any picture-taking action.

To model this disjunctive constraint between the execution of picture-taking actions

and turning actions, we create this state variable for each satellite Si which has two

states: Stable and Vibrating. We introduce two zero-duration actions: StartVibrating

and StopVibrating. These actions, when performed, switch one mode to other instan-

taneously. Each turning action; TurnAntenna or TurnInstrument, while executing must
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have the satellite in the vibrating mode, and similarly during execution of any TakePic

action the satellite must be in the stable mode, as described in the following figure.

Note that since we are going add more than one copies of the dummy actions StartVi-

brating and StopVibrating, we will use similar setup-matrix as in switching on and off

actions to remove the symmetry.

6. Satellite Storage Mode(Ri): Each satellite in this domain has a SSR that stores the

pictures of the observations taken by instruments on-board. Each SSR supports two

operations: writing on the SSR and reading from the SSR. One of the limitations of the

SSR in our domain is that these two operations are mutually exclusive. This means that

TakePic actions and Downlink actions can’t be executed at the same time, because the

TakePic action writes data on to the SSR and the Downlink action reads from the SSR.

To model this mutually exclusive constraint on the SSR, we create this state variable

for each SSR similar to the Satellite Mode state variable as described above. It has

two states: Read state, and Write state. Any reading operation (Downlink actions) can

be performed while the SSR is in the Read state, and similarly any writing operation

(TakePic actions) can only be performed while the SSR is in the Write state. To model

this instantaneous change between these two states, we introduces two dummy zero-

duration actions: StartWriting and StartReading as described in the following figure.
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Note that since we are going add more than one copies of the dummy actions, we will

use a similar setup-matrix as in Instrument Status state variable to remove the symmetry.

6.2.3 Resources

1. Satellite Storage(Si): Each satellite Si has a solid state storage (SSR) unit. Each SSR

has a maximum capacity. We will assume at the start of the planning each SSR is empty.

We will model this storage as a reservoir resource. Each TakePic action will store data

into the SSR and each Downlink action will remove data from the SSR.

2. Satellite Battery(Si): Each satellite Si is equipped with a battery that provides power to

the satellite. Each battery has a maximum capacity. Each action except switching on and

off instruments and recharging consumes power, and recharge actions produce power in

the presence of the Sun. We will model each satellite’s battery as a reservoir resource,

and assume that at the beginning of the planning horizon all batteries are full of charge.

Note that we ignored the amount energy consumed if an instrument is turned on over a

period of time. That means, in reality if a instrument is in ON, then it should consume

energy from the battery at a given rate. Since in our model, only transitions are allowed to

consume (or produce) energy, we can’t effectively model this scenario without extending

the formulation.

3. Satellite Recharge Access(Si, SWj): For each Satellite-SunTimeWindow pair (Si, SWj)

we create a set of recharge actions, where each action corresponds to the recharge rate

of the satellite’s battery. This means that recharge actions can’t overlap. To model

this non-overlapping constraint we create this unary resource for each Satellite and Sun-

TimeWindow pair, and model the recharge actions to use this unary resource during their

execution. This will guarantee that recharge actions will be executed in a sequence.
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Note that, for any Satellite-SunTimeWindow pair, all possible of sequences of recharge

action executions are equivalent. This means, if we have 3 recharge action to execute

within the same SunTimeWindow: Recharge-1, Recharge-2, and Recharge-3, then all

the execution sequences: {1,2,3}, {1,3,2}, {2,1,3}, {2,3,1}, {3,1,2} and {3,2,1} will

produce same result. This symmetry in the model may cause problem for backtracking

search.

We can adopt a similar technique of introducing a setup matrix to break the symmetry as

used in the Instrument Status state variable. The following figure describes an example

where we have 3 recharge actions executed in the order RC-1, RC-2, and RC-3. Note

that the Start and End actions are the dummy start and end action.

To impose a total ordering between these three recharge actions (RC) we add the follow-

ing setup matrix to this unary resource:

Start RC1 RC2 RC3 End

Start inf 0 inf inf 0

RC1 inf inf 0 inf 0

RC2 inf inf inf 0 0

RC3 inf inf inf inf 0

End inf inf inf inf inf

Note that this setup matrix makes all the sequences except RCi → RCi+1, inconsistent,

and forces the RC1 to be the first one to execute.

Time Window
Note that all the transitions on Satellite Recharge Access(Si, SWj) are constrained to

be executed within the SWj time-window. To model this we will add a time-window

constraint on each Satellite Recharge Access(Si, SWj) resource as follows:

time− window(Satellite Recharge Access(Si, SWj), SWstart
j , SWend

j )
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6.2.4 Actions

Recall that each action in our model consists of a set of transitions, where each transition has

their own duration and start time that may have an offset from the start time of the action.

In this section we will describe the actions and their transitions in detail. All the actions in

the satellite domain have two common elements: first all transitions of each action have the

same duration, and second none of the transitions of each action have any offset from start of

the action. This means that for each action all transitions start at the same time, and finish

at the same time. Each transition of an action has two setup states: FromSetupState and

ToSetupState. We will use the setup state “default” to represent the case where the transition

has no setup state.

We will describe the transitions in two different table formats: one for state variable tran-

sitions and the other for resource transitions. The following table describes the structure of the

state variable transitions:

SV Name FromState ToState FromSS ToSS

The first column describes the name of the state variable that is affected by the transition,

second and third column describes the state change caused by the transition. Note that for a

PREVAIL transition, the columns FromState and ToState will have the same value. The last

two columns describe the from and to setup states of the transition.

We will use a similar table structure to describe a resource transition. The only columns

that are different from the state variable transition table are the ”Requirement” and ”Type” as

described below.

RES Name Req Type FromSS ToSS

The ”Requirement” column lists the resource requirement of the transition, and the ”Type”

column describes the type of the resource requirement. There are three types of resource

requirements: BORROW, CONSUME and PRODUCE.

1. TurnInstrument(Inst, TargetFrom, TargetTo): This action turns an instrument from

a target location to another target location. We will model this action with two state

variable transitions and one resource transition.

SV Name FromState ToState FromSS ToSS

Inst Dir Ready To Turn Pointing To Target TargetFrom TargetTo

Sat Mode Vibrating Vibrating default default

The first state variable transition is an EFFECT transition that changes the state variable

Instrument Direction from the state Ready to Turn to Pointing to Target. Note that this

transition’s FromSetupState is the location of the TargetFrom and ToSetupState state
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is the location of the TargetTo. The second transition is a PREVAIL transition on the

state variable Satellite Mode on the Vibrating state. This transition has no particular

setup states.

The following CONSUME resource transition represents the resource consumption of

this action (BTurnInstrument) on the Satellite Battery resource. This resource transition

has no setup states.

RES Name Req Type FromSS ToSS

Sat Battery BTurnInstrument CON default default

The duration of this action (and all its transitions) depends on the slewing angle between

the locations and the slewing speed of the instrument.

2. TakePic(Inst, Target): This action represents taking a picture of an target using a satel-

lite instrument. The duration of this action depends on the observation type. We will

model this action with six state variable and two resource transitions.

The following table describes the six state variable transitions.

SV Name FromState ToState FromSS ToSS

Observ Status Not Taken Stored default default

Inst Dir Pointing To Target Pointing To Target Target Target

Inst Status ON ON default default

Sat Mode Stable Stable default default

Sat Storage Mode Write Write default default

Only the first transition is an EFFECT transition that changes the state Not Taken to the

state Stored of the Observation Status state variable. Other five transitions are PREVAIL

transitions that represent the following facts: during execution of this action Instru-

ment Direction must have the state Pointing To Target, Instrument Status must have the

state ON, Satellite Mode must have the state Stable, and Satellite Storage Mode must

have the state Write.

This action has two resource transition: a CONSUME transition that represent consump-

tion of satellite’s battery (BTakePic) and another CONSUME transition to represent space

consumption on Satellite’s SSR (DTakePic) to store the picture.

RES Name Req Type FromSS ToSS

Sat Battery BTakePic CON default default

Sat Storage DTakePic CON default default
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Note that only one transition of this action has setup states defined. The PREVAIL

transition on the state variable Instrument Direction has both its setup states set to the

target location of the action.

TimeWindows: Note that each Target is visible to an instrument only within certain

time intervals. This means that for each < Inst, Target > pair there is a set of time-

windows {TW1, TW2, ..., TWn}. To represent this constraint, we will create n (where

n is size of the set of time-windows) copies of the TakePic(Inst, Target) action, one for

each time interval in the set, and specify a time-window constraint on each copy as the

following:

time− window(TakePicTWi(Inst, Target), TWstart
i , TWend

i )

3. TurnAntenna(Antenna, GSFrom, GSTo): This action is similar to the TurnInstrument

action. The duration of this action depends on the slewing angle between the locations

and the slewing speed of the antenna. We will model this action with two state variable

transitions and one resource transition.

The following table describes the state variable transitions.

SV Name FromState ToState FromSS ToSS

Ante Dir Ready To Turn Pointing To GS GSFrom GSTo

Sat Mode Vibrating Vibrating default default

The following CONSUME resource transition represents the resource consumption of

this action on the Satellite Battery resource (BTurnAntenna).

RES Name Req Type FromSS ToSS

Sat Battery BTurnAntenna CON default default

Only the EFFECT transition on Antenna Direction has setup states defined; the FromSetupState
is the GSFrom location and the ToSetupState state is the GSTo location.

4. Downlink(Antenna, GS, Observation): This action downloads a picture from a satel-

lite’s SSR to a ground station. The duration of this action depends on the size of the

observation and the transfer rate of the antenna. We will model this action with two state

variable transitions and two resource transitions.

SV Name FromState ToState FromSS ToSS

Observ Status Stored Downloaded default default

Sat Storage Mode Read Read default default
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The EFFECT transition on the state variable Observation Status will change the state

from Stored to Downloaded, and the PREVAIL transition requires the Read state on the

state variable Satellite Storage Mode.

This action has a CONSUME resource transition on the Satellite Battery resource (BDownlink)

and a PRODUCE transition on the Satellite Storage resource (DDownlink).

RES Name Req Type FromSetupState ToSetupState

Sat Battery BDownlink CON default default

Sat Storage DDownlink PROD default default

Note that none of the transitions of this action has any setup state.

TimeWindows
Note that each ground station is visible to an antenna only within certain time inter-

vals. To represent this constraint, we will create copy of the Downlink(Antenna, GS,

Observation) action for each such time interval and specify the following time-window

constraint, as we did for the TakePic(Inst, Target) actions above.

time− window(DownlinkTWi(Antenna, GS, Observation), TWstart
i , TWend

i )

5. SwitchON(Inst): This action represent switching on an instrument. It has a single EF-

FECT transition that changes the state variable Instrument Status’s state from OFF to

ON.

SV Name FromState ToState FromSS ToSS

Inst Status OFF ON SwitchON SwitchON

Note that the state variable transition’s FromSetupState and ToSetupState are the

name of the action as we have discussed before in the overview of the Instrument Status

state variable. We assume that this action doesn’t consume any resource, because its real

power consumption is negligible for planning and scheduling purposes. We model the

SwitchOFF(Inst) action in the same way.

6. Recharge(Satellite, SunTimeWindow): This action represents an unit recharge of the

Satellite’s battery during a given SunTimeWindow. This action has one PRODUCE

resource transition on the Satellite Battery resource, and a BORROW transition on the

Satellite Recharge Access resource for the given satellite and the SunTimeWindow.

RES Name Req Type FromSetupState ToSetupState

Sat Battery p PROD default default

Sat Rechg Acc 1 BORR default default
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Note that p is the recharge rate of the satellite battery. Since this action represents a unit

of recharge, its production is p on the satellite battery. Satellite Recharge Access is a unary

resource, all resource requirements on it will have the demand of 1.

6.3 Limitations

In this chapter we have described how to model a complex satellite problem, that has both

planning and scheduling problem characteristics, using the transition-based representation. We

have chosen the satellite problem because of its wide range of complexities and familiarity

in the AI planning and scheduling community. We have shown how our representation can

express most of the complexities in the satellite problem, however there are a few features that

our representation couldn’t express due to the following limitations:

1. Continuous Resources: In our representation resources are modeled with discrete ca-

pacities and requirements. In reality resources like the battery and the storage device of

a satellite are continuous resources. We approximate the behavior of these resources by

discretizing the resource requirements on them.

2. State Resource Consumption: There are some cases where a state variable consumes

resources by being in a particular state. For example , the instruments while in the state

“ON” will consume power continuously. We are unable to model that in the current

representation.

3. Requirements and Durations are fixed: In our current representation resource require-

ments and durations are fixed integer quantities. This model is a restrictive model of

transitions’ resource requirements, because in reality many transitions’ resource require-

ment would be dependent on their duration, where the duration of a transition would be

a decision.

A continuous resource model provides a more accurate representation of the real world. How-

ever, the problem with continuous resources is that they are very hard to solve. That’s why we

have chosen the discrete resource model, as in most scheduling problem models. Generally,

approximating a continuous resource requirement, like recharging a battery, into discrete steps

is acceptable. We have shown in the problem representation chapter (Chapter 2, page 36) how

we can discretize a continuous action into different levels precision. The choice of level of

discretization often depends on the application in hand.

The last two items are related to each other. If we could model the the third item, then we

could also extend our representation to model state resource consumption in a simple way. We

will discuss this further in the next chapter (see Section 7.2.1).
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6.4 Discussion

The two main aims of our proposed modeling approach is to simplify modeling of complex

problems with simple constructs, and to provide a clear solution approach. We believe that a

constraint-based search is best suited for solving problems that are in between planning and

scheduling. That is why have chosen the compilation of the representation to a CSP. However,

other solution approaches such as state-space or plan-space search could also be implemented

for the representation.

We believe our representation simplifies the modeling of complex problems by providing

simple and intuitive constructs like state variables, resources, actions and transitions. In the

following subsection we will describe some of the distinguishing features of our representation.

6.4.1 Features of the Problem Reresentation

State Variable modeling: Our state variable model allows the domain modeler to specify

different constraints like min-max achievement, min-max persistence, and time-windows on

change of state (achieve/change before/after constraints) on each individual state of state vari-

ables. These constraints translate into simple temporal and counting constraints in our (com-

piled) constraint model as described in Chapter5. Constraints like these can also be modeled

in other languages, such as PDDL2.1. In PDDL2.1 these constraints are modeled using addi-

tional state variables called Timed Initial Literals (TIL) [14], mainly to model time-window

constraints , and special types of actions called “strut” and “clip” [25]. A strut action models

the minimum separation constraint between two happenings4, and clip action forces two hap-

penings to coincide within a time interval. These special actions also introduce additional state

variables. All these additional state variables need to be added on selective sets of existing ac-

tion pre-conditions in the domain. We argue that our method of specifying constraints on state

variables and on its states is much simpler than the modeling techniques available in PDDL2.1,

because in our representation the domain modeler specifies these constraints as properties of a

state variable and its state. All necessary temporal and counter constraints are handled in the

implementation level (i.e. our compilation). In PDDL2.1 it is the job of the domain modeler

to model these constraints via additional state variables and actions, which makes the model

complicated to understand and harder to maintain in the long run.

Resource Modeling: We have simplified the resource modeling by categorizing types of re-

sources and types of resource requirements, which provides a simpler and intuitive construct

for resource modeling. These categorizations also let us develop specialized constraints and

propagation techniques for different types of resources (as shown in Chapter 4). In AI plan-

ning languages resources are generally modeled in very generic way as numerical fluents. As

pointed out by Boddy [8], this generic modeling of resource makes it hard for AI planners to
4Happenings are generally start and end points of actions in PDDL
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exploit the special structures of different types of resource usages.

Action Modeling: In our action model we group the pre-conditions and effects of actions in

the form of transitions. We believe this representation makes the modeling of actions simple

for the modeler because it only expresses what an action does on a state variable or resource

without explicitly stating the execution conditions. This action model can express complex

behaviors of actions with delayed effects, different durative effects, more than one effect on

the same resource or state variable etc. Although in this case study we have kept the action

representations of the satellite domain simple, in Chapter 25 we have shown a complex version

of TurnInstrument action (adopted from [46]). Like the complex version of TurnInstrument

action, the intermediate effects of an durative action can also be modeled in PDDL2.1, but not

directly as it is done in our representation. In PDDL2.1, the action with intermediate effects is

decomposed in several durative actions, one for each intermediate happening time point. Then

additional clip actions (as described above) are introduced with this set of decomposed actions

to ensure all these durative actions are sequenced. We argue that our action-model is much

more intuitive and simple to express than the decomposition technique needed in PDDL2.1.

Generalizing Setup Matrices: We have introduced setup matrices for both resources (as

done in many scheduling models) and state variables. In our model we use setup matrices

for the traditional usage, for expressing time delay between two consecutive transitions, as

well as for two other reasons: excluding invalid action sequences (as shown in the Instru-

ment Direction state variable), and removing symmetry from action sequences (as shown in

the Instrument Status state variable). This gives the domain modeler power to express action-

sequence related constraints in a simple way. On the other hand, in PDDL2.1 to represent

sequence dependent setup times we need add additional strut actions between each pair of ac-

tions that needes to be sequenced, where duration of the strut action will be the setup time.

This makes the domain modeler’s job harder, and makes the domain description messy.

6.4.2 Modeling Abstraction for Planning/Scheduling Problems

There are other constraint modeling languages such as ZINC [16], OPL, and others that provide

an abstraction layer on top of a constraint solver. These languages aim to provide modeling

ease for a wide variety of constraint satisfaction problems, from Suduku to job-shop problems.

Our modeling representation can be seen as a specialization of these languages, targeted at

problems that fall in the category of problems that are in between planning and scheduling

problems. Although problems in this category can also be modeled using languages like ZINC

or OPL, we believe our representation provides a higher level abstraction that makes the job of

the domain modeler easier.

5see page 27
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6.5 Experiment

We have implemented a planner called “TransPLAN”(written in C++) that incorporates the

modeling elements of the transition-based framework for planning and scheduling problems,

the compilation of the model to a CSP and a solver for the compiled CSP. TransPLAN provides

several APIs that a modeler can use to model problems in terms of state variables, resources,

actions and transitions, and solve planning and scheduling problems.

In this section we describe the result of solving instances of Satellite scheduling problem with

TransPLAN. First we will describe the parameters used for instance creation for the Satellite

domain. Then we will describe the branching heuristic used for solving the CSP. We conclude

the experiment section with a brief discussion about the observations.

6.5.1 Problem Instances

The problem instances used in the experiment are created by varying different parameters.

Following are the description of the key parameters.

Parameters Description

Num Satellite Number of available satellite in the problem

Ins Type Number of unique types of instruments. Each instrument type has a battery

usage rate, an angular speed and a rate for processing data.

Ant Type Number of unique types of antennas. Each antenna type has a battery usage

rate, an angular speed and a rate for downloading data.

Num Groudstation Number of available ground stations.

Num Observation Number of observations. Each observation has a randomly assigned size.

Time windows This parameter defines the number of time windows available for satellite

where sun is visible, where a ground station is visible, and where observa-

tion is visible. Although number of time windows are created for all of the

above are same, each type of time-windows start time, duration , and time

delay between two consecutive time-windows are assigned randomly.

We have created instances with 2-4 satellites, 2-3 ground stations, 3-4 time windows, 2-3

instrument and antenna types, and 3-9 observations.

6.5.2 Branching Heuristic

To solve any CSP effectively, a good branching heuristic is important. We have discussed our

branching strategy in Section 4.1. In this experiment we have chosen a branching heuristic

that simulates a forward progression search. It tries to build a path for each state variable, and
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a flow network for each resource, starting from the dummy start transition and ending at the

dummy end transition. At each branching point we choose a pair of transitions Tvar and Tval ,

where Tvar and Tval are transitions of same domain object (either a state variable or a resource),

and Tvar can provide support to Tval . The following heuristic is used to choose a transition pair

to branch on.

For each domain object d (either a state variable or a resource) we create two sets of transitions:

Can Support(d) and Need Support(d). Each transition in these sets must be included in the

plan. Transitions in Can Support(d) set are able to provide support to other transition, and

transitions in Need Support(d) set needed support from other transitions.

We calculate a transitive closure set Need Support(d∗) using the PossAchiev (for state vari-

ables) or PossSupp (for resources) 6 relation of transitions in Need Support(d). Need Support(d∗)
set represents all possible paths from the dummy start transition to each transition in Need Support(d)
set on d.

For each transition T in Can Support(d) set we create a pair < T, T′ > such that T′ exists

in the set Need Support(d∗) and T can provide support to T′. This means T′ must exists in

either PossFollow(T) if d is a state variable or in PossSupp(T) if d is a resource. We define

end time of each pair < T, T′ > as the earliest end time of T′ in the current state.

For each domain object d, we select a pair, < T, T′ >d that has the minimum end time. Then

we select the pair Tvar and Tval as the pair among the domain objects that has minimum end

time.

6.5.3 Result and Discussion

In the experiment we measure two main aspects of TransPLAN: search quality in terms of

number of failures, and time to find a valid solution. Figure 6.1 illustrates the search quality

or effectiveness of the branching heuristic (Y-axis) for each problem instance (X-axis). From

the result we can observe that the number of failures are mostly zero irrespective of the size

of a search problem (measured in number of actions/transitions). This means the branching

heuristic is able to solve most problem instances bracktrack free. We think this is because of

our propagation and inference rules that produced tighter domains of the CSP variables.

Figure 6.2 shows the solution time for each problem instance. Form the result we can

observe that the solution time increases with the number of actions and transitions. This is

caused by the fact that increment in number of actions and transitions increases the number

of variables and constraints in the CSP, and propagation and inference rules take more time

to reach a fix point. In this particular problem doamin, the number of dummy actions (such

as StartVibrating/StopVibrating, StartReading/StartWriting etc.) has a significant effect on the

6Please see page 89, page 105, and page 93 for definition of PossSupp, PossFollow and PossAchiev sets.
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Figure 6.1: Search quality

Figure 6.2: Solve time
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size of the CSP. We have added each such dummy action (2 ∗ #Observation) times. Another

increment in the number of actions is due to the unit recharge actions created for each possible

recharge time window for each satellite. Number of such recharge actions depends on the

number of time windows per satellite and the duration of time windows.

6.6 Summary

The main goal of this chapter is to demonstrate how a realistic problem, that integrates planning

and scheduling aspects, can be modeled in our proposed transition based representation. We

have chosen a complex version of the well known (within the AI planning community) satellite

problem domain. We incorporate many complex constraints in this domain, like time windows

for actions and states, complex resource usage, different modes of the SSR of satellites etc. We

have shown that we can successfully model most of the complexities in a simple way.



Chapter 7

Conclusion

The aim of this thesis is to model and solve problems that are in between planning and schedul-

ing. These problems have scheduling constraints like time-windows on actions, capacited

resources, sequence-dependent setup times between activities on resources etc. In addition

to these classical scheduling constraints, usually there are various complex action choices

(planning-constraints) that have cascading effects. In this thesis we have proposed a solu-

tion for modeling and solving this particular class of problems via integrating planning and

scheduling techniques in a uniform framework. The proposed solution has three main parts:

modeling, describing the modeling tools; compilation to CSP, describing an automatic compi-

lation of the model to a CSP; and propagation and inference techniques for solving the CSP.

We conclude the thesis in this chapter by summarizing the contributions, and discuss some

future research directions that will naturally follow the current work.

7.1 Thesis Summary

In this section we will summarize the work in the main three parts of the thesis: problem

representation, the constraint model, and the propagation and inference techniques for the

constraint model.

7.1.1 Problem Modeling

We have extended the multi-valued state variable planning representation language with in-

dividual state constraints for state variables, explicit representation of different types of re-

sources and resource requirements, and a compact action-transition model. The individual

state-constraints for state variables enable us to express complex temporal constraints easily.

Explicit representation of resources, as commonly done in scheduling problems, make it easy

for users to express common resource-related constraints like capacity constraints, and it also

gives a way to exploit the structure of resource requirements, as we have done in the constraint

model for the resources (support links). The action-transition model makes it easy to model

complex features of actions like delayed effects, effects with different durations on different

157
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domain objects etc. The semantics of each type of transition encapsulates the execution con-

ditions at start, during, and at the end of the transition. This simplifies the task of modeling a

complex action from a user point of view. Although we have only considered a discrete model

of resource requirements, we have shown how we can model monotonic and non-monotonic

continuous resource requirements with different granularity.

We defined a solution to a planning problem as a flexible plan. A flexible plan is defined as

a partially ordered schedule of actions, where action start times are intervals. Partially ordered

schedules are flexible, and therefore more robust to unexpected delays. A flexible plan creates

a partially ordered schedule (POS) of transitions on each state variable and on each resource,

where each POS represents a set of valid executions of transitions.

The main goal of our proposed modeling framework is to make the modeling task easier

for a user by providing enough features to model all necessary complexities of the problem and

hiding the complexity of the execution correctness within the semantics of these features. Al-

though this means that our modeling language is somewhat more restrictive than other planning

languages like PDDL or ANML, our modeling language can express most of the complexities

associated with the problems that are in between planning and scheduling as we have demon-

strated in the case study in Chapter 6.

7.1.2 Constraint Model

We believe that the constraint-based search framework is best suited for solving the class of

problems that we are interested in. This is why we have provided an automatic compilation for

our representation to a CSP. This compilation is bounded by the number of action occurrences.

Our constraint model can be seen as a system of CSPs, one for each state variable and resource,

that are synchronized by a simple temporal network (STN) for action start times. Each CSP

for a state variable or resource is based on the concept of precedence constraints which implies

temporal constraints on the action STN. Central to our constraint model is the explicit repre-

sentation and maintenance of the precedence constraints between transitions on same domain

object. For state variables, the main decision variables are the causal link, achieve variables,

and for resources the main decision variables are based on support link, support variables.

Both these decision variables imply precedence constraints when assigned. These variables

unify both planning and scheduling decision making within a constraint framework.

Solving the constraint model entails posting a minimal number of precedence constraints

such that goal conditions are achieved and no other constraints are violated. We have shown

how a solution to our constraint model indeed gives us a valid flexible plan, which creates a

valid partial order schedule on each state variable and resource.
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7.1.3 Branching, Propagation and Inference

Precedence constraints between transitions play a central role in our constraint model. We

have proposed a branching scheme that branches on the two main decision variables : the

achieve variables and the support variables. Our branching scheme provides an alternative

approach to the two step process of the constraint posting search for partial order scheduling,

which first finds a resource conflict, and then posts additional precedence constraints to resolve

the conflict. Based on this branching strategy we have shown how to infer new precedence

relations from temporal and mutex constraints, and how to infer tighter temporal bounds from

the precedence constraints.

Each supporting decision implies an explicit precedence constraint. The effects of each of

these constraints are propagated via temporal and resource constraints using the propagation

rules as described in Chapter 4. Based on a propagated and consistent search state, our infer-

ence rules finds two main types of constraints: additional precedence constraints, and tighter

bounds on the temporal and resource support variables. Note, since the precedence constraints

play a central role in our constraint model, the main aim of our inference techniques is to derive

more implied precedence constraints.

We have shown that the proposed inference techniques can deduce temporal bounds and

precedence relations comparable to the propagation techniques based on absolute temporal

values when temporal constraints are tight (see Section 4.6.2.1 on page 112). Furthermore, we

have compared our inference techniques with Laboire’s work[36] on the Energy Precedence

constraint (see Section 4.4.2.1 on page 102) and the Balance constraint (Section 4.6.2.2 on

page 114), which are based based on relative temporal relations. All these propagation tech-

niques tighten the bound on the temporal variables. Our inference and propagation techniques

not only consider the transitions and actions that are included in the plan but can also deduce

new constraints for activities that are not yet included in or excluded from the plan. We have

shown that our inference techniques can also infer bounds as good as the inference techniques

mentioned above, and in addition infer additional precedence constraints.

7.2 Future Work

7.2.1 State Resource Consumption

In many real life problems, state variables may consume or produce resources when in a partic-

ular state. For example, consider the satellite problem described in the previous chapter, where

each instrument of a satellite continuously consumes battery while being switched on. Simi-

larly a generator will consume fuel and produce power at a constant rate while it is running.

In the current modeling framework we don’t have the capability to model this feature. In

some cases, where the effect of state-resource consumptions are insignificant we can ignore
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them in the approximated planning model. But in many cases these state-resource consump-

tions have a big effect on decision making. That’s why we think it is important to extend our

modeling framework to include them in the future.

To be able to represent state-resource consumptions we need to know two things: how long

the domain object was in the state and what is the rate of consumption. Then we can calculate

the resource requirements for the state. In our current model we have assumed that the resource

requirements of a transition are given as input. First we need to extend our model to represent

resource requirements of a transition as function of its duration and resource requirement rate.

Second, to know how long the domain object exists in a particular state, we need to extend our

transition model by introducing a GAP-Transition between each pair of consecutive EFFECT

transitions in the plan as described in the following figure. Since a plan creates a sequence of

Figure 7.1: Adding GAP transition to model resource consumption

EFFECT transitions on each state variable, each GAP transition in between two consecutive

EFFECT transition would represent the duration that each state persists. With this extension

together with the change where we define resource requirement as function of duration and

requirement-rate, we will be able to model problems with state-resource consumptions.

7.2.2 Generalized Resource Model

In our framework we can’t model resources that are a mix of reusable and reservoir resources.

In practice there can be resources that are both a reservoir resource and a reusable resource.

For example consider water as a resource in a chemical plant, where water is produced as a

by-product, used as coolant, and consumed as a solvent. If we assume that all the water is

stored in a water tank, then it will not be possible to model the water tank as a resource in our

modeling framework. In the future we would like to extend the resource model to have only

one type of resource which can have three different resource requirements: BORROW, PRO-

DUCE and CONSUME. This would be an easy extension, because each BORROW transition

can be thought of as a combination of CONSUME (at the start ) and PRODUCE ( at the end
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) transitions, as pointed out in Chapter 2. This means that a BORROW transition could sup-

Figure 7.2: General resource model with 3 types of requirements

port CONSUME transitions and other BORROW transitions, and can be supported by other

BORROW transitions and PRODUCE transitions as described in the figure 7.2.

7.2.3 Evaluation of Efficiency

In this thesis we have discussed how to model a planning problem that lies between planning

and scheduling, and how to solve it via an automatic compilation to a CSP. To be able to solve

problems of realistic size we need to make sure our constraint-search algorithm is efficient.

There are three aspects of solving a CSP efficiently: a branching strategy that defines the search

space, efficient propagation and inference techniques that help to prune the search space, and

good heuristics for branching choices to guide the search.

We have proposed a new branching strategy for solving the CSP similar to assigning causal

links in POP planning systems, which provides an alternative to the precedence constraint post-

ing (PCP) approach used in constraint-based scheduling. We have compared our method for

finding partial order schedules (POS) on resources with two other state of the art techniques [3].

The first technique is an envelope-based complete search technique that posts precedence con-

straints when resource envelopes violate the capacity constraints of the resources. The second

approach is a two-step approach which creates a POS from a fixed time solution using the

chaining procedure (see Section 4.6.1.2 on page 110). Our branching strategy together with

Inference 4 and Inference 6 proved to be effective for solving RCPSP/max instances. We com-

pared our results with the two state of art approaches on two quality criteria of robustness:

“flexibility” and “fluidity” of the POS. Our method outperformed the envelope based PCP

method, and found results as good as, and often better than to the two-step approach, but was

not as efficient.
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A detailed empirical evaluation of our branching and propagation techniques on problems

with both planning and scheduling characteristics and comparison with the state of the art is

due. Also another aspect of solving CSPs efficiently, which we have not investigated so far,

is the branching heuristics. Finding an efficient heuristic for the constraint-based search algo-

rithm that will solve all problems efficiently in this class of problems is a non-trivial problem

to solve. We will consider these two topics as our future research subjects.
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